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Preface

The analysis of structures is a common core course requirement in U.S. universities (and those elsewhere) for
students majoring in ¢ivil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The stu-
dents are trained in structural analysis through a series of courses beginning with strength of materials and the analy-
sis of simple indeterminate structures. In these elementary courses, the students are exposed to the fundamental
structural analysis concepts in a simplified form. Comprehension of these principles becomes essential because these
basic courses lay the foundation for other advanced structural analysis courses. The usefulness of this subject cannot
be overemphasized because structural mechanics principles are routinely used in different engineering disciplines.
We can even speculate that some of the concepts were used consciously or subconsciously for millennia by the mas-
ter builders—the Romans, Egyptians, Eurasians, Chinese, Indians, and many others—of magnificent edifices, cathe-
drals, temples, bridges, ships, and other structural forms. The analytical formulation of the principles, however, is
much younger. It is popularly traced back to the cantilever experiment (ref. 1) of Galileo (1564—1642) depicted in
this figure.

Galileo Galilei

(1564- 1642)

Galileo's cantilever experiment.

Even though some of his calculations were underdeveloped, Galileo’s genius is well reflected in the solution of
the problem, especially because Newton (1642—1727), born in the year of Galileo’s death, was yet to formulate the
equilibrium laws and develop the calculus that we use in the analysis of structures. Industrial revolutions, successive
wars, and their machinery requirements assisted and accelerated the growth of structural mechanics because of its
necessity and usefulness in such cases. Several textbooks have been written on the subject, beginning with a compre-
hensive treatment by Timoshenko in his Strength of Materials (ref. 2), first published in 1930. Therefore, the logic
for yet another report on this apparently matured subject should be given.
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We address this issue by considering the analysis of a symmetrical, four-legged table as an example (see Illustra-
tive Example 15). Navier (1785-1836) attempted to determine the four reactions along the four legs of the table,
but he could write only three equilibrium equations in terms of the four unknown reactions. He could not solve the
(3 x 4) rectangular system of equilibrium equations because there were four unknowns but only three equations were
available. Navier thus identified the indeterminate nature of structural mechanics problems. Their solution required
additional conditions that were needed to augment the equilibrium equations. Deformation compatibility represented
the additional conditions. If Navier or another researcher had completed the formulation of the compatibility condi-
tions during the past century and a half, there would have been no need to write this report. As it turned out, the com-
patibility formulation that was available in the literature remained either incomplete or ad hoc in nature both for
structural analysis and the theory of elasticity. We have researched and understood these conditions, which for
Navier’s table problem provide the additional (1 x 4) rectangular compatibility equation. Coupling Navier’s (3 x 4)
equilibrium equations and our (1 x 4) compatibility condition provides a system of four equations, which in matrix
notation can be symbolized as [S]{R} = {P}. The four equations with a (4 x4) square matrix [S] can be solved for the
four reactions {R} given an external load {P}. Thus, the direct force determination method, which can complement
currently available indirect methods, has now opened up. This formulation, which couples the equilibrium equations
and the compatibility conditions to directly solve for the internal forces without an intermediate step of solving for a
displacement or a redundant, is referred to in the literature as the Integrated Force Method (IFM) for structures.

In elasticity, Saint Venant (1797-1886) formulated the compatibility conditions in the field of an elastic
continuum, but he overlooked the conditions on the boundary, which have since been formulated by Patnaik.! Aug-
mentation of Saint Venant’s field conditions with our boundary compatibility conditions completed the classical
formulation, which in the literature is referred to as the Completed Beltrami Michell Formulation (CBMF). The IFM
and CBMF are equivalent force and stress formulations, for structures and elasticity, respectively.

Structural analysis, despite its immaturity with regards to compatibility, progressed, but only through indirect
methods. These are the stiffness method, which uses displacement as the primary unknown, and the redundant force
method, which treats redundant forces as primary unknowns. Both are indirect formulations because the internal
forces (or the reactions in the case of Navier’s table problem) are not the unknowns of either method, but they are
back-calculated—from displacements in the stiffness method and from redundant forces in the redundant force
method.

Stiffness Method

Navier observed that the table had three displacement unknowns, these were the transverse displacement, w, and
two rotations, 6, and 6), (see fig. 1.1); and three equilibrium equations were available to him. The three equilibrium
equations, when expressed in terms of the three unknown displacements, resulted in the set of three stiffness equa-
tions. Solution of the three stiffness equations yielded the three displacements, from which reactions could be back-
calculated. Generalization of this procedure, which is credited to Navier, became the popular displacement, or
stiffness, method.

Redundant Force Method

In this method, one leg of the table was “cut” to obtain a three-legged auxiliary table. This three-legged auxiliary
table had three reactions, which were calculated from the three equilibrium equations for the external load P. For the

Un three-dimensional elasticity, the boundary compatibility condition can be written in terms of stress (6,T) on the boundary of an
isotropic, elastic continuum with direction cosines (ay,, 4y, a,.) and Poisson’s ratio (v) as

gaz—{avz(cy - VG, —vcsx)—a\,y(1+v)ryz}+§y—{zzvy(csZ -VOo, —voy)—avz(1+v)tyz} =0

d d '
5;{:1\“(02 -Vo, —vcsy)—avz(l+v)ru}+-é;{avz(cx -vo, ~vcz)—avx(1+v)ru}

i

0

ga;{avy(ox -vo, —vcz)—avx(l+v)rxy}+-a—a;{avx(cy - Vo, —vcx)—avy(1+v)txy}= 0
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auxiliary table, the displacement AP at the “cut” was back-calculated from the three known reactions. The solution
process was repeated for a load R, referred to as the redundant force, in place of the reaction for the leg that was
“cut,” and the displacement AR at the “cut” was obtained in terms of the redundant force R. Since the physical table
had no real cut, the “gap” was closed (AF + AR = 0), which yielded the value of the redundant, or one reaction for the
table problem. Thus, the table problem was reduced to an equivalent three-variable problem with two loads, consist-
ing of a given external load P and a known reaction equal to R , which was treated as a load. This three-variable
problem could be solved with the three equilibrium equations. Generalization of this procedure became the redun-
dant force method, which was popular at the dawn of computer-automated analysis. Currently, for all practical pur-
poses, the redundant force method has disappeared because it was cumbersome and had limited scope.

[ Equilibrium equation I

Missed until
recently

Equilibrium equations and compatibility
conditions in elasticity.

The fundamental equilibrium and compatibility concepts of structural mechanics can be depicted in a pie dia-
gram. The immaturity in the compatibility condition is represented by the shaded quarter. This portion was recently
completed by Patnaik. It is true that indirect analysis methods, which included the popular displacement method, can
be developed utilizing the information contained in just three quarters of the pie diagram, bypassing the shaded quar-
ter. The direct Integrated Force Method, however, was developed utilizing all the information in the pie diagram.
The direct formulation was envisioned by Michell (1863-1940), and it is described by Love (1863-1946, ref. 3) in
the following quotation.

“It is possible by taking account of these relations [the compatibility conditions] to obtain a complete
system of equations which must be satisfied by stress components, and thus the way is open for a direct
determination of stress without the intermediate steps of forming and solving differential equations to deter-
mine the components of displacements.”

Philosophically, it is not difficult to conceive of a deficiency in a solution that could be obtained without the
explicit use of certain conditions, such as the compatibility conditions for structural problems. The following quota-
tion by Todhunter (1820-1884, ref. 4) describes one such situation.

“Important Addition and Correction. The solution of the problems suggested in the last two
Articles were given—as has already been stated—on the authority of a paper by the late Astronomer
Royal, published in a report of the British Association. I now observe, however—when the printing of
the articles and engraving of the Figures is already completed—that they cannot be accepted as true
solutions, inasmuch as they do not satisfy the general equations (164) of § 303 {note that the equations
in question are the compatibility conditions]. It is perhaps as well that they should be preserved as a
warning to the students against the insidious and comparatively rare error of choosing a solution which
satisfies completely all the boundary conditions, without satisfying the fundamental condition of strain
[note that the condition in question is the compatibility condition}, and which is therefore of course not
a solution at all.”
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Compatibility conditions are required for the analysis of the indeterminate problems of structural mechanics.
Because the compatibility conditions were not fully comprehended, indeterminate analysis was attempted without the
explicit use of the compatibility condition. Now that we understand the compatibility conditions, it is natural to use
these conditions to analyze indeterminate problems. The use of compatibility systematizes indeterminate analysis,
especially for problems with temperature variations and the settling of supports, because the initial strains are
directly accounted for through compatibility.

This report, which presents the IFM to solve indeterminate structural mechanics problems, does not duplicate
any existing textbook. Because it complements indeterminate analysis, it should be read by undergraduate students in
strength of materials and elementary structural analysis courses. This report should also be valuable to researchers
who wish to work on the new method of forces or to complement their understanding of the compatibility condition
of structural mechanics.

Industry required solutions to structural mechanics problems. This demand was fulfilled through the two indirect
methods. However, completing the structural analysis formulations to develop a direct method, such as the IFM, was
not the central worry of industrialists. Industry’s demand for solutions (not methods), complemented by the availa-
bility of computers, promoted the rapid growth of structural analysis via the indirect displacement method. This
method is very popular in industry, and for the foreseeable future, it will remain the method of choice. The displace-
ment method, however, may have entered an era of diminishing returns because of the intensive, worldwide research
of this method for the past half century. Therefore, structural analysts can afford to take time off from the displace-
ment method to research the little-explored method of forces, which was temporarily abandoned when engineers
began to use computers to automate structural analysis.

In summary, there is the single direct stress determination method, which is the Integrated Force Method. In
contrast, there are several indirect methods wherein stress is back-calculated, such as the stiffness method, the redun-
dant force method, and others, as listed in table I (also see app. A). The direct IFM should be learned because it can
bring value-added benefits to the analysis, design, and testing of structures.

The IFM for advanced analysis is already available in the literature (see the IFM references, refs. 5 to 32).
Through this report we would like to introduce the IFM to undergraduate engineering students. Although written
especially for this young group, this report can be useful to others interested in learning the new method. For the
benefit of advanced readers, an elementary treatment of the IFM concept for finite element analysis is also included.

TABLE L—METHODS OF STRUCTURAL MECHANICS AND ASSOCIATED VARIATIONAL FUNCTIONALS

Method Method Primary variables Variational
number functional
Elasticity Structures Elasticity Structures
1 Completed Beltrami-Michell |Integrated Force Stresses Forces IFM variational
Formulation (CBMF) Method (IFM) functional
2 Airy formulation Redundant force method  {Stress function Redundants Complementary
energy
3 Navier Formulation (NF) Stiffness method (DM) Displacements Displacements or Potential energy
deflections
4 Hybrid method (HF) Reissner method (RM) Stresses and Forces and deflections {Reissner
displacements functional
5 Total formulation (TF) Washizu method (WM) Stresses, strains, and |Forces, deformations, |Washizu
displacements and deflections functionat

The subject matter of the report is presented in four chapters—Introduction, Basic Theory of Indeterminate
Analysis, Solution of Indeterminate Problems, and Integrated Force Method and Dual Integrated Force Method for
Finite Element Analysis. Chapter 1 introduces the three analysis methods: the Integrated Force Method, the displace-
ment method, and the redundant force method. Chapter 2 develops the analysis equations—equilibrium equations,
compatibility conditions, deformation displacement relations, and force deformation relations. Chapter 3 solves a set
of 15 examples, some with thermal loads and settling of supports. The integrated and dual force methods for finite
element analysis are introduced and illustrated in chapter 4. The first four appendices (A to D) provide classification
of variables, superposition techniques, strength of material formulas, and sign conventions. Appendix E lists the
important symbols used in this report.
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Summary

The theory of structures that evolved over the centuries (see the following figure) camouflaged a deficiency in
the compatibility formulation. It was a deficiency that would block the growth of the primal method of force (or
IFM) for analysis of indeterminate structures, causing it to split into the stiffness method and the redundant force
method, as depicted in the figure on the next page. Our research on the compatibility theory has now restored the
natural course of growth, leading to the Integrated Force Method for structures and the Completed Beltrami-Michell
Formulation in elasticity.
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Compatibility barrier prevented extension of force method for indeterminate structures.

IFM allows free movement between variables: from stress to displacement and vice versa. It can be specialized to
derive the stiffness and other methods given in table I. In addition, the IFM variational functional can be modified to
obtain the functionals of the other methods. The derived methods cannot outperform the primal IFM, which has also
been demonstrated numerically. Textbooks on the strength of materials, theory of structures, elasticity, and related
subjects need to be revised so that they incorporate the new information on the theory of compatibility. This report,
which utilizes the new information on compatibility conditions to solve indeterminate problems, is the precursor of
a strength of materials textbook.
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Chapter 1
Introduction

Solving indeterminate strength of materials problems via conventional methods can be cumbersome and difficult in
comparison to analyzing determinate structures. Conventional analysis methods include redundant analysis, wherein
members are “cut” and the “gaps” are subsequently closed; superposition techniques; and solutions through the applica-
tion of energy theorems. Some of these concepts are illustrated in appendix B. Even though such procedures can solve
simple indeterminate problems, their generalization is not straightforward, especially for complex structures. Further-
more, such procedures, though applicable for linear analysis, cannot be easily extended for nonlinear or dynamic analy-
sis. After comprehending the conventional methods, readers will rightfully realize that these redundant-based ad hoc
techniques can be problem dependent. Their generalization, when possible, can be cumbersome at best.

Analyses of indeterminate problems, in addition to the equilibrium equations (EE), require the compatibility condi-
tions (CC). The natural equilibrium concept common to the analysis of both determinate and indeterminate problems is
straightforward; and its development, understanding, and use for analyzing structural mechanics problems is complete.
However, until recently, the same could not have been said about the compatibility conditions. These CC, which are
unique to the analysis of indeterminate structures, have been neither adequately researched nor utilized in analyses. The
immature state of development of the CC can be considered to be the primary impediment to the conventional analysis
of indeterminate structures. We have researched and now understand these illusive compatibility conditions. Our under-
standing of the CC has systematized the analysis of indeterminate structures. Conceptually, such an analysis can be rep-
resented by the following equation:

Initial deformation

Equilibrinm equation { ) Mechanical load (L)
Compatibility condition - :

A balance of the internal force and external mechanical load is achieved through the equilibrium equation, which
forms the upper part of equation (1.1). The compliance of force and initial deformation is achieved through the compati-
bility condition, representing the lower portion of equation (1.1). This equation, which bestows appropriate emphasis on
equilibrium and compatibility, provides both necessary and sufficient conditions for determining force in an indetermin-
ate structure. The displacement, if required, can be easily back-calculated from the force.

In advanced finite element structural analysis, the new force method that has been developed is based essentially on
equation (1.1), which couples the EE and CC. In the literature, this method is referred to as the Integrated Force Method
(IFM). Research publications on IFM are listed in the IFM references under the headings Integrated Force Method—
Basic Theory (refs. 5 to 10), Integrated Force Method—Design Optimization (refs. 11 to 18), Integrated Force
Method—Elasticity (refs. 19 to 22), and Integrated Force Method—Finite Element Analysis (refs. 23 to 32). Analysis of
indeterminate problems, the subject matter of this report, though simpler, also requires the same EE and CC concepts.
To maintain consistency, we refer to this procedure, which utilizes EE and CC simultaneously to solve structural
mechanics examples, as the IFM solution to indeterminate problems. The equilibrium equations can be transmuted to
generate the popular displacement method of structural analysis. Likewise, the redundant force method can be devel-
oped through a cumbersome transformation of a set of selected continuity conditions (members are “cut” and the “gaps”
are closed) that bears some semblance to the CC representing the lower portion of equation (1.1). In other words, the
IFM bestows simultaneous emphasis on the EE and CC, whereas the displacement method and redundant method
emphasize the equilibrium and the compatibility, respectively. Since the IFM utilizes both EE and CC, this method can
be developed systematically and can produce reliable solutions even for difficult structural analysis problems.
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Background to Analysis Concepts

Some of the fundamental structural analysis concepts are illustrated through the example of a table problem. A
four-legged table subjected to a load P with eccentricities e, and e, is shown in figure 1.1(a). The problem is to deter-
mine the four reactions (R, R,, R, R,) along the legs of the table. It is assumed that this symmetrical table, which is
made of wood, is resting on a level floor made of a rigid material, such as stone. The distances between the legs along
the x- and y-directions are 2a and 2b, respectively. The cross-sectional area and the modulus of elasticity of the legs are
A and E, respectively. The problem is referred to as “Navier’s Table Problem” because Navier (1785-1836) was the
first to attempt its solution. The problem is solved as Illustrative Example 15 in this report. Here, the basic analysis con-
cepts are examined through the table problem.

Three equilibrium equations can be written for the problem. These are obtained through the summation of the
forces along the z-direction, EZV = 0, and the summation of the moments about the x- and y-axes, X M=0and Z)M =0,
respectively. The three equilibrium equations can be written in matrix notation as

Ry
1 1 1 1 P
Ry
-a —a a a =qe, P (1.2)
I I p
- - e
Ry *

The three equilibrium equations are expressed in terms of four unknown reactions. The four reactions cannot be deter-
mined from the three equilibrium equations. Thus, the problem is indeterminate. The indeterminate nature of the table
problem was recognized first by Navier. Solution of the indeterminate table problem required augmenting the three
equilibrium equations with one additional condition. The compatibility condition represented the additional condition.

The table problem can be solved following three different methods. These are (1) the IFM, which is the subject
matter of this report; (2) the displacement method, which is currently popular; and (3) the redundant force method,
which for all practical purposes has disappeared from current practice.

Integrated Force Method

In the IFM, the compatibility condition is formulated in terms of the four reactions as

(Z%J(Rl —Ry+R3—Ry)=0 (13)
The three equilibrium equations (eq. (1.2)) and the compatibility condition (eq. (1.3)) represent four equations that

can be solved for the four reactions. The IFM, which calculates the force unknowns directly without any reference to
displacement, represents the direct force determination method. The basic IFM concept is to couple equilibrium and
compatibility (as shown in eq. (1.1)), to calculate the forces. The IFM could not be developed earlier because the gen-
eration of the compatibility condition, as given in equation (1.3}, had not been known to Navier (1785-1836) (see the
Integrated Force Method—Basic Theory references, refs. 5 to 10), nor to other structural analysts, until Patnaik’s
formulation. In IFM, displacements, if required, can be back-calculated from reactions, see Illustrative Example 15.

Displacement Method

Navier, who recognized the indeterminate nature of the table problem but did not formulate the compatibility
condition, developed a displacement solution to the problem. He observed that each equilibrium equation is associated
with a displacement. For example, the table problem with three equilibrium equations has exactly three unknown
displacements (see figs. 1.1(b), (c), and (d)). These are (1) the transverse displacement w along the z-axis, correspond-
ing to the transverse EE (the first equation in equation (1.2)); (2) the rotation 8, about the x-axis, corresponding to the
first moment EE (the second equation in equation (1.2); and (3) the rotation ey about the y-axis, corresponding to the
second moment EE (the third equation in equation (1.2)). The displacements (w, 6, (-)y) represent the dual variables of
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(e) Redundant force method.

Figure 1.1.- Navier's table problem.

the EE given by equation (1.2) (see app. A). Navier expressed the three EE given by equation (1.2) in terms of the three
displacements by eliminating four reactions (R,, R,, Rs, R,) in favor of three displacements (w, 8., Gy). Navier’s equa-
tions can be written in symbolic form as

kiy ki kg || w P
k12 k22 k23 GX =<e, P (]4)

y

ki3 kyz ka3 [0y (exP
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Here, k;; (i, j = 1, 2, 3) are the stiffness coefficients that can be calculated from the material and the geometrical proper-
ties of the table.

Solution of the stiffness equation (1.4) yields the displacement values (w, 6 , 8, ). From the displacements, the reac-
tions are recovered through back-substitutions. The displacement method is an indirect method because even when only
the reactions are required, it is necessary to proceed through an intermediate step of forming and solving the stiffness
equations. Even though Navier’s genius did not formulate the CC given by equation (1.3), he did give us the displace-
ment method that is currently popular.

Redundant Force Method

In the redundant force method, one of the table legs, for example the first leg of the table, is “cut” as shown in
figure 1.1(e). The resulting table is referred to as the auxiliary determinate structure. The auxiliary structure with three

unknown reactions (R,, R3, R,) is solved using the three equilibrium equations given by equation (1.2), without the first
column and R;. The auxiliary solution (RﬁD R R3P , Rf ) obtained for the external load P is repeated next for a redundant
force ®_ in place of the first leg of the table (with P = 0) to obtain Rzﬁ’ R3R, RZ{. Deformation A? at the cut is obtained
for the auxiliary structure for the external load P (or RY RE,RE ) and for the unknown redundant force K

(Or R2K , R3R s RZ() . The deformation A? is a function of the unknown redundant force R , which represents the dual

variable of the compatibility condition given by equation (1.3) (see app. A).
Deformation A% at the cut for the first leg only is also obtained for & . The actual structure has no “cut.” This
condition is restored by closing the gap through the following continuity condition of the redundant force method.

A+ AR =0 (L5)

Equation (1.5), which is a linear function of the redundant R , is solved to obtain the redundant force ® . The reactions
(R, R,, R3, R,) and displacements (w, ex, Gy) are back-calculated by using the value of %.. A solution using the redun-
dant force method is given in appendix B for a beam problem.

The redundant force method was developed before the end of the 19th century by Clebsh (1833-1872), Maxwell
(1831-1879), Castigliano (1847-1884), Mohr (1853-1918), and others. The IFM is compared with the displacement
method and the redundant force method in references 29 and 30, respectively. Comparison of the three different meth-
ods is not the objective of this report. The objective is to describe the IFM to engineering students, who are encouraged
to learn all three methods first, then compare and contrast the three methods. The purpose of this report is to show that
indeterminate IFM analysis can be developed in a systematic manner. The straightforward procedure does not use
redundant analysis. The theory will be developed from basic principles, and it will be self-contained. No prior know-
ledge of compatibility conditions or IFM theory is required. Discussion of the theory is limited to simple linear analysis
problems suitable for strength of materials and elementary structural analysis courses. The IFM theory, howéver, is
problem independent, and it can be easily generalized for solving difficuit problems in linear, nonlinear, and dynamic
regimes. For the sake of completeness, an elementary treatment of the IFM for finite element analysis is given in chapter 4.

This report is written to complement the existing textbooks on strength of materials and elementary structural
analysis. Indeterminate IFM analysis for elementary problems will be presented in the subsequent two chapters:

Basic Theory of Intermediate Analysis and Solution of Intermediate Problems. The IFM for finite element analysis is
introduced in chapter 4. Five appendixes have been added. Appendix A reviews the classification of variables and
methods of structural mechanics, appendix B discusses the superposition principles for indeterminate problems,
appendix C summarizes some standard strength of materials formulas, appendix D summarizes the sign conventions
used in the report, and appendix E lists the important symbols used in the report.
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Chapter 2
Basic Theory of Indeterminate Analysis

Equilibrium and compatibility are the two fundamental concepts of the structural mechanics theory. The EE, how-
ever, are written in terms of forces, which can be the axial force, shear force, bending moment, or the torque. But the
CC, in their original state, are expressed in terms of deformations, which can be elongations B4, curvatures B?, or rela-
tive angles of twist f3'. It is necessary to express the CC in terms of forces because it can then be coupled to the EE,
which are already available in terms of forces. For this purpose, two more equation sets besides the EE and CC are
required. These are the deformation displacement relations which are required to derive the compatibility conditions;
and the force deformation relations that are used to eliminate forces in favor of deformations in the compatibility condi-
tions. The four sets of structural mechanics equations are the

(1) Equilibrium equations (EE)

(2) Deformation displacement relations (DDR)
(3) Compatibility conditions (CC)

(4) Force deformation relations (FDR)

The four basic relations in terms of the three variables (forces, deformations, and displacements) are developed
and illustrated in this chapter. Solving indeterminate problems using these relations is the subject matter of chap-
ter 3. The IFM solution yields forces and displacements. Stresses and strains that can be induced in a structure can
be back-calculated from forces by using standard formulas that are summarized in appendix C.

Equilibrium Equations

Force balance is the central concept behind the equilibrium equations. The four types of forces—axial force F,
shear force V, bending moment M, and torque 7—at a point B for a beam of length ¢, depth d, and width b which is
oriented along the abscissa of a Cartesian coordinate system are shown in figure 2.1. The axial, or normal, force F is
along the x-axis. The shear force V is along the y-axis. The bending moment M in the x-y plane is directed along the
z-axis. Torque T'in the y-z plane is directed along the x-axis. For simplicity and clarity, we will confine our discus-
sions to two-dimensional problems only. Even two-dimensional problems utilize the z-direction to define moment.
Standard sign convention is followed—that is, the forces are considered positive when they are directed along posi-
tive axes (as described in app. D).

The equilibrium equations for the four types of forces common to both determinate and indeterminate analysis
can be generated as follows (see fig. 2.1):

(1) The sum of all axial forces along the x-axis is zero: > F =0 (2.1a)
X-axis

(2) The sum of all shear forces along the y-axis is zero: > V =0 (2.1b)
y-axis

(3) The sum of all moments along the z-axis is zero: by M =0 (2.1¢)
Z-ax18

(4) The sum of all torques along the x-axis is zero: > T =0 (2.1d)
X-ax18
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Simultaneous application of all four EE given by equation (2.1) is seldom required in the solution of simple struc-
tural mechanics problems. For example, truss analyses use equilibrium along coordinate axes; beam analyses require
moment and shear equilibrium equations, and shaft torsion analyses use the equilibrium of torques.

Formulation of the EE is illustrated by considering a propped cantilever beam that is fixed at A and simply sup-
ported at B, as shown in figure 2.2(a). The beam, which has a span of (¢ = 2a), is subjected to a transverse external
load P at the center of the span. Equilibrium equations can be developed by considering either reactions or internal
forces as the unknowns. Both approaches, which for the purpose of analysis are equivalent, are illustrated for the
problem. The sign convention summarized in appendix D is followed.

Approach 1: Reactions as unknowns.—This method considers the three reactions as the unknowns of the prob-
lem. These are the reaction R, and moment M, at support A and the reaction Ry at support B, as shown in the free-
body diagram in figure 2.2(b). Summation of the forces along the y-axis and the moments along the z-axis at point B
yields the two EE:

ZV=0 RA+RB-P=O
y—axis
Pt
SM=0 My —(Ry)+—==0 (2.2a)
x—axis 2

In matrix notation, the two EE can be written as

Ry
-1 -1 0 -P
Ry =3 py (2.2b)
l 0 -1 'i'
My
or [Bl{F}={P} (2.2¢)

In equation (2.2¢), [B] is a rectangular equilibrium matrix of dimension (m X n), where m = 2 is the number
of rows or the number of EE, and n = 3 is the number of columns or the number of unknown forces; {F} is the
unknown force vector of dimension n = 3; and {P} is the load vector of dimension m = 2. The components of the
load vector {P} in the EE must be aligned along the positive directions. The load (~P) is along the positive y-axis
and the moment (P¢2) is directed along the positive z-axis (see app. D). Since the two EE given by equation (2.2b)
are expressed in terms of three unknowns (R, Rg, M), the EE alone cannot be solved to determine the three reac-
tions. The problem is indeterminate. The degree of indeterminacy designated by r can be calculated as

r = number of unknown forces (n) — number of equilibrium equations (i)
or (2.3)
r =n—m = degree of indeterminacy

The structure is one-degree indeterminate since r = 1. One additional equation is necessary to solve the problem.
This is the compatibility condition of the problem, which is discussed later.

Approach 2: Internal forces as unknowns.—In this approach, the beam is divided into elements and nodes.
The cantilever beam is divided into two elements, which are the circled 1 and 2, and three nodes (1, 2, 3), which are
shown in squares in figure 2.2(c). Typically, boundary points, load application points, change of member orienta-
tions, and change of material constitute nodes. An element is a member connecting two nodes. For a beam element,
the force distribution can be determined if two internal forces anywhere in its span are known. The pair of force
unknowns can be a moment M and a shear force V or two moments (Mp, M q) as depicted in figure 2.2(d). The oppo-
site direction is used for Mp and M 4 because the moment equilibrium is satisfied, or Mp =M . Although both
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force systems are equivalent, we prefer the two-moment system because both moments have the same unit of
measure—force times distance. The two-moment system is further expanded in figure 2.3(a), where associated
shear forces induced at nodes p and g are determined by taking moments at locations g and p, respectively, as

V. = My -M,
P a
M,-M
qu_p_____q_ (2.4)
a

The moments (Mp, M q) and associated shear forces (V_, V) for the element depicted in figure 2.3(a) satisfy both
transverse and rotational equilibrium conditions. In this approach, the EE are written along the free displacement
directions for all nodes in the structure. We avoid writing the EE along the restrained directions, such as at
support A, or node 1 (along the y-displacement and z-rotational directions), and at support B, or node 3 (along the
y-displacement direction) in figure 2.3(c), because this process excludes the reactions as additional unknown force
variables, thereby reducing the number of equations. Reactions at the restrained nodes are back-calculated from the
forces. For this example, both cases—internal forces, as well as internal forces and reactions, as unknowns-—are
fllustrated:

Case I—Internal forces as unknowns: BEach beam element has two moments, and the total structure
has four unknown moments (M, M, M3, M, ). Rotational EE at the simple support B yield M, = 0, and the

Mp Mq
P q
?M -M ?M -M
2Mp~Mg
Vp= 9_"P Vg =
I a |

(a) Beam element with two unknown moments (Mp, Mq).

UG

Mq-M, My M3 — FRe
Rp a a a a

{b) Free-body diagram for cantilever beam shown in figure. 2.2(a).
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(c) Equilibrium at nodes.
Figure 2.3.—Internal force system.
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unknowns reduce to three moments: M,, M,, and M, as shown in the free-body diagram of the structure in figure
2.3(b). Equilibrium equations are not written for the clamped node 1, which is fully restrained. Node 2 can displace
and rotate along the y-axis and z-axis, respectively. Two EE that can be written for node 2 along the two displace-
ments are as follows (see fig. 2.3(c)):

M, -M M
Along the y-direction z V=0 — (2—1) —p+32_-0
a a
y
Along the z-direction Y M=0 > -My+M;=0
z

For node 3, the rotational equilibrium (M, 4= 0) was used earlier to reduce the moment unknowns from four (M » Mo,
M3, M) to three (M, M,, M). The transverse equilibrium at node 3 was avoided to exclude the reaction Ry as an
additional unknown. Node 3, in other words, provides no additional equilibrium equation. The two EE of the canti-
lever beam can be written in matrix notation.

M,
1/a -1/a -1/a Mo b -P 55
0 1 -1 2T o (25)
M;

The EE given by equation (2.5) is one-degree indeterminate because two equations are expressed in terms of
three unknown moments. One additional CC is required for the determination of the moments. Once the moments are
known, the reactions at the clamped support and the simple support can be back-calculated by writing the EE along
the restrained directions, such as along the transverse and rotational directions at support A and along the y-direction
at support B, as follows:

My—M M,-M
ZVatnOdel RA——L——Z—————l)—zo or RA=2——l
a a
y
D' Mat node 1 “My+M;=0 or My=M,
z
M M
) Vat node 3 Rp—-=—2=0 or Rp=—2 (2.62)
5 a a
The reaction vector {2} in matrix notation can be written as
R4 —1/a 1/a 0 M,
Myt = 1 0 0 M, (2.6b)
Rp 0 0 1/a||M;s

or in matrix notation
{R} =[Bgl {F}

where [Bz] is the equilibrium matrix required to back-calculate reactions from the internal forces {F'}.
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Case 2—Internal forces and reactions as unknowns: In this approach, the EE are written at all nodes—that is,
restrained as well as free nodes. There are two EE for each of the three nodes (1, 2, 3), or there are six EE in terms of
seven unknown forces, consisting of four internal moments and three reactions (M, M,, M 3 Mys My, Ry, Rp). These
six equilibrium equations follow:

SV=0atnodel[-1/a 1l/a 0 0 0 -1 0 || M, 0
M =0atnodel| -1 0 0 0 1 0 0 || M, 0
XV=0atnode2| 1/a -1/a -1/a 0 O 0 0 || M; _ -P @7
IM=0atnode2| O 1 -1 0 0 0 0 PMy 0
XV =0atnode3| O 0 1/a 0 O 0 -1 |[My 0
XM =0atnode3| O 0 0 1 0 0 0 [| Ry 0

Rp

The EE at the nodes given by equation (2.7) represent a concatenation of equation (2.5), the boundary moment con-
dition M, = 0, and equation (2.6a).

Different choices of unknown forces neither increase nor decrease the degree of indeterminacy of a structure.
For example, the propped cantilever beam is one-degree indeterminate, or r = 1, for all three choices of force
unknowns: (1) reactions (R, Rg, M), n=3,m=2, and r =n—m = 1; (2) internal moments (M, M,, M3), n =3,
m =2, and r = 1; and (3) moments and reactions (M, M,, ..., Rp),n=7,m=6, and r = 1. It is preferable to work
with fewer equations (eq. (2.2b) or (2.5)) rather than a large number of equations (eq. (2.7)), especially for manual
calculations. Thus, we can understand and appreciate the basic principles of indeterminate analysis without intensive
numerical calculations.

Compatibility Conditions

For indeterminate problems, compliance of deformations (f(3,, B, . . . , B,) = 0) is the central compatibility
concept. The CC can be derived in two steps:

Step 1—Derive the deformation displacement relations (DDR).
Step 2—Eliminate the displacements from the deformation displacement relations to obtain the compatibility
conditions.

Step 1—Derive the deformation displacement relations: The DDR is an important structural mechanics relation.
The DDR is the central ingredient behind both the equilibrium equations and the compatibility conditions. The EE
that was generated earlier from the force balance principle can be alternatively derived from the DDR by using varia-
tional calculus. Likewise, the reverse is true; that is, the DDR can be derived from the equilibrium equations. The CC
can be generated from the DDR by direct elimination of the displacements (see app. A).

Deformation Displacement Relations

We will derive the DDR from the EE that have been formulated earlier. The deformations are associated with
each type of force variable. Extension is the deformation for normal or axial force. Likewise, for the bending moment
the curvature is the deformation. For shear force it is the shear deformation, and for torque it is the relative twist
angle. In the derivation of the DDR, it is not essential to know the exact nature of the deformations. These will be
further explained during the discussion of the force deformation relations. Here, it is sufficient to understand that half
the product (force times deformation) represents the internal strain energy JE that is stored in a structure. The internal
energy can be written as
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IE=3{FY (B} =5 (FiBi + Fay +. ... .+ FiB,) @8)

where the deformations (,, B,, . . . , B,) correspond to the n internal forces (F|, F,, . .., F,), respectively. Likewise,
the work done W by the external loads can be written as

W=%{P}T{X}=%(P1X1+P2X2+, A PLX,) 2.9)

where the displacements (X, X,, ..., X,) correspond to the m external loads (Py, P,, . . ., Pm), respectively. In
equations (2.8) and (2.9), deformation {B} and force {F} are n-component vectors, whereas displacement {X} and
load {P} are m-component vectors (with degree of indeterminacy r = n —m).

According to the work-energy conservation theorem, the internal energy (/E) stored in the structure is equal to
the work done by the external load (W), or

IE=W

or %{F}T{B} =LA {x} (2.10)

In equation (2.10), the load vector {P} can be eliminated in favor of internal forces {F} by using the EE
([BI{F} = {P}) to obtain the following relation:

(R B} ={F}T[B]" {X} (2.11a)

or {F}T({B}—[B]T{X}) =0 (2.11b)

Because the n forces can be arbitrary and {F} is not a null vector, its coefficient should be zero, which yields the
DDR as

{8} =[B]" {x} 2.12)

The DDR are easily defined through the equilibrium matrix [B], which is essential for analysis. Generation of the
DDR does not require additional effort once the equilibrium matrix [B] is known.

In the derivation of the DDR given by equation (2.12), it is assumed that load {P} and displacement {X} are in
the same direction. The directions of the displacement components {X} in the DDR given by equation (2.12) are
along the corresponding directions of load components {P}. Thus, orientation of the load vector. {:P} in the EE
(IB){F} = {P}) along positive axes will yield displacements in the positive axes, see appendix D.

Step 2—Eliminate the displacements from the deformation displacement relations to obtain the compatibility
conditions: In the DDR given by equation (2.12), n deformations {} are expressed in terms of m displacements
{X}. Elimination of m displacements from the n DDR yields r = n — m equality constraints as

[CKB} ={0} (2.13a)

Equation (2.13a) represents the r compatibility conditions of the indeterminate structure with n force and m displace-
ment unknowns. The compatibility matrix [C] with r rows and n columns has full row rank r.

The deformation {f} in the CC given by equation (2.13a) represents total deformation consisting of an elastic
component {B}¢ and initial component {B}° as

{8} ={B}* +{B}° (2.13b)
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The CC in terms of elastic deformation can be written as

[CHB} =[CHB}* +[CHB}® =0 (2.13¢)
or [CHB}® ={3R}

where {8R} =[C}{B}° (213d)

The compatibility condition, when expressed in terms of total deformation, represents a homogeneous equation,
such as equation (2.13a). The CC becomes a nonhomogeneous equation when it is written in terms of elastic defor-
mations, such as in equation (2.13d).

Initial Deformations and Support Settling

Initial deformations {B}° are included in the right side of the compatibility conditions through the effective ini-
tial deformation vector {S8R} defined in equation (2.13d). Such deformations, when due to thermal effects, represent
temperature strains, which can be written as the product of the coefficient of thermal expansion o and the tempera-
ture change AT as €/ = o AT. Initial deformation due to thermal strains ({B}° = {&}") can be easily calculated and
included in the compatibility conditions. These are not further elaborated on here but are discussed in the solution of
the examples in chapter 3.

Initial deformations {PB}° due to support settling can be calculated from energy considerations. Let us assume
that a support settles by X amount and that the corresponding reaction induced at the support is R. The reaction that
can be back-calculated from forces { F}, by using equation (2.6b), can be rewritten for a single reaction R as

R={8,}" {F} (2.14a)

where {Qir}Treprcsents arow of the equilibrium matrix [B] in equation (2.6b).
The work done by the induced reaction R and the prescribed displacement X can be written as

W= —%}—(_R (2.14b)

The work term is negative because the reaction R and displacement X are in opposite directions.
The strain energy /E can be written as

IE= %{{B}O}T{F} (2.140)

where {B}° represents initial deformation due to an X amount of support settling.
The work-energy conservation theorem (W = JE) can be written as

_%szé{{B}O}T{F} (2.14d)
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The reaction R is eliminated between equation (2.14a) and (2.14d) to obtain

B’ ={3,}, % +{8,}, %o .. +3,} X,

or {B}O =[3,] {)_(}

nx1 nxp px1

Because {F} is arbitrary and it is not a null vector,

8= -{3,1x (2.14f)

Equation (2.14f) yields the initial deformation vector for the settling of a single support by X amount. The equation

can be generalized when a p number of supports settle simultaneously by the amount X 1 )_(.2, - X, as

{}° ={3.}, X1 +{8,}, X2+ .. .3} X,
" (B} ~[2,1{x}

{8}’ ={&=] {¥} 2.15)

where the p columns of matrix [B,] correspond to p rows of the equilibrium matrix (B in equation (2.6b) for the p
number of prescribed displacements { X L due to the simultaneous settling of the p supports. Equation (2.15) is simi-
lar to the DDR ({B} = B7{x)) except that the EE are written for the restrained nodes.

Null Property of the Equilibrium Equation and Compatibility Condition Matrices

The following null property ((BICIT = [0] or [CI[B]” = [0)) of the equilibrium and compatibility matrices can be
verified from equations (2.12a) and (2.13a). Elimination of the deformation between equations (2.12) and (2.13a)
yields

[CI[B]" {x}=[0] (2.16)
Because displacement {X7} is arbitrary and it is not a null vector, its coefficient matrix must vanish, or
(8" =[0] or [B][c]" =[0] (2.17)

For correctness, the null property of the equilibrium and the compatibility matrices should be verified after the gen-
eration of the matrices.
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Illustration for Compatibility Conditions

The example of the propped cantilever beam used earlier to illustrate the generation of the EE is used again to
illustrate the calculation of the CC. The two simple steps mentioned earlier, (1) generate the DDR and (2) eliminate
displacements from the DDR to obtain the CC, are followed. The CC are generated for all three cases for which EE
were developed earlier in equations (2.2b), (2.5), and (2.7).

Case 1: Reactions (R, Rg, M, ) as unknowns (see eq. (2.2b)).—

Step 1—Derive the deformation displacement relations: These relations ({B} = [BIT{X}) are obtained from
equation (2.2b) as

Bl = —Xl +€X2
Br=-X,
By =-X, (2.18)

where deformations (B,, B,, B3) are associated with the reactions (R4, R, M), respectively. The displacements (X,
X,) are also referred to as the dual variables of the first and second EE given by equation (2.2b) (see app. A).

Step 2—Eliminate the displacements from the deformation displacement relations to obtain the compatibility
conditions: Two displacements (X, and X,) are eliminated between the three DDR given by equation (2.18) to obtain
the single CC in deformations as

B1—B2+4B3=0
B
or [ChBY=[1 -1 £}B,;=0 (2.19)
B3
Thus, [Cl1=[1 -1 /]

The null property ([BILC]Y) for the EE and CC matrices can be verified as

-1 -1 0 11_0 220
‘ 0 -1 _e”o (2:20)

Case 2: Internal forces (M, M, M) as unknowns (see eq. (2.5)).—For this choice of force variables (M, M,,
M), the following CC is obtained by writing three DDR from the two EE given by equation (2.5) and then eliminat-
ing the two displacements:
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2B; +B, +P3 =0

B1

or [2 1 1]<By;=0 (2.21a)
B3

Thus, [C]=]2 1 1]

The reader can derive and verify the CC. The null property of the EE and CC matrices, [B][C]T = [0], can be

verified as
2
1/a -1/a -1/a 0
1= (2.21b)
0 1 -1 ) 0

Notice that the elements of matrix [C] given by equation (2.21a) are dimensionless. This is because the
deformations (B,, B,, B5), which are rotations corresponding to the moments (M, M,, M), have the same unit of
measure. In contrast, the units of measure of different elements of the [C] matrix given by equation (2.19) differ
because deformations 3, and B,, which correspond to reactions, are extensions measured in length units; whereas
the deformation B3, which is due to a moment, is a rotation that is dimensionless.

Case 3: Internal forces and reactions as unknowns (see eq. (2.7)).—Determination of CC for this selection
of forces also starts with the formulation of the seven DDR ({f} = [B]T{X }) expressed in terms of six displace-
ments (see eq. (2.7)):

X, X
Bi=-"l-x,+ =2 Ba =X
a a
X, X
By =—L-2+X, Bs =X,
a a
X3 X5
By ==Xy + =2 B =X,
a a
Br=-X;s (2.22)
Elimination of the six displacements (X, X,, . . ., Xc) from the seven deformation displacement relations

given by equation (2.22) yields the single CC in terms of the seven deformations (8,, B, . . . , B-) as follows:
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2B; +B2 +B3+2B5 ——a—+7=0 (2.232)

B
B2
B3
o 2110 2 -1/a 1/a}{Bs}=0
Bs
Bs
Bs
Thus, [Cl1=[2 1 1 0 2 -1/a 1/4] (2.23b)

The null property of the equilibrium and compatibility matrices can be verified from the EE and the CC, which
are given by equations (2.7) and (2.23b), respectively, as

[8] [c]" =
6x7  7Tx1

(2.24)

S O O O o o

The problem has only one compatibility condition, irrespective of the choice of force unknowns, such as reactions,
internal forces, and their combinations. However, the EE and CC matrices, [B] and [C], respectively, differ depend-
ing on the choice of force unknowns.

Force Deformation Relation

The equilibrium equations are expressed in terms of force variables {F} as [B]{ F} = { P}. Likewise, the compat-
ibility conditions are written in terms of deformations {B} as [C]{B} = {0}. Since indeterminate analysis requires the
coupling of the EE and CC, it is necessary to establish relations between forces and deformations. The force defor-
mation relation (FDR) can be used to express the CC in terms of forces, which can then be coupled to the EE, which
are already available in terms of forces. The FDR of strength of materials is equivalent to the familiar Hooke’s law of
elasticity, which relates stress G to strain € through the Young’s modulus E of the material (¢ = E¢). The FDR can be
obtained from Hooke’s law by relating stress to force and deformation to strain. For a normal, or axial, force F acting
in a bar with a cross-sectional area A and length ¢, as shown in figure 2.4, the FDR can be obtained as follows:

a

o= E and &€= ﬁ— (2.25)
A 4
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Hooke’s law can be written in terms of force F and deformation B¢ as follows:

e-Bl_o_F
{ E AE
or B4 = (LJF = gF (2.26a)
AE & '
where the flexibility coefficient is defined as
=L (2.26b)
Sy '

The flexibility coefficient (g = ¢/AE) represents the deformation in the bar for a unit value of the force (F = 1).

Force deformation relation from energy considerations.—The FDR given by equation (2.26a) can be alterna-
tively derived from energy considerations. The first derivative of strain energy U with respect to force F is equal to
the deformation 3¢ corresponding to that force F,

v _
dF
Before equation (2.27) can be used, the strain, or internal, energy has to be defined. For the case of the normal force
acting in a uniform bar of cross-sectional area A (as shown in fig. 2.4), the strain energy can be defined as

or B¢ (2.27)

!
[0} 31
U= J' TAds (2.28)
0

When stress is eliminated in favor of force as ¢ = F/A and strain in favor of force as € = F/AE, the strain energy for a
uniform bar of area A can be obtained only in terms of force F as

2 2
U=J- F di = F°r
02AE 2AE
oU £
b=—Z = —|F 2.29
o P oF (AE) (229)

Notice that equation (2.26a), which is derived from Hooke’s law, and equation (2.29), which is obtained from energy
considerations, are identical. Experimentation is the basis of Hooke’s law. The alternative, energy-based derivation,
however, is analytical in nature even though the definition of strain energy requires material constants such as the
Young’s modulus E. In the analytical indeterminate analysis, we prefer the energy-based derivation for FDR because
in this approach all four analysis equations (EE, CC, DDR, and FDR) can be derived analytically.
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Strain Energy Expression for Force Deformation Relations

Strain energy is a powerful scalar quantity that can be used to derive various analysis equations and formulations
of structural mechanics (see app. A). In this elementary treatment, a definition of the energy scalar that is sufficient to
derive the force deformation relations for beams will be presented. For the discussion here, the strain energy scalar
can be defined as follows:

o]

U=J' % 1 GOoAT |dv (230)
-\ 2E

where

E Young’s modulus

AT change in temperature

v volume of the beam

a coefficient of thermal expansion

c stress in the beam

Equation (2.30) is specialized next to obtain the explicit strain energy expression for axial force, bending moment,
and shear force, as well as for pure torsion.

Case 1: Axial force in a bar.——For the bar shown in figure 2.4, the strain energy scalar given by equation (2.30)
can be specialized with the following definitions:

Elemental volume, dv = Adx

F
S o= 231
3 (2.31)
(1 (F\? F
U“:J' ——(—) + AT VA dx
J2e\a) "4

where U? is the strain energy stored in the bar subjected to an axial force F and a AT change in temperature.
For a uniform bar of length ¢ and cross-sectional area A, the strain energy U? is simplified to

F2r
Ue =m+F(xAT€ (2.32)

The axial elongation in the bar B¢ is obtained as the first derivative of the scalar U with respect to the axial force F
as

Ba:dU“ =( ¢

& —)F+(xAT£’ (2.33)
dF  \AE

In the absence of temperature (AT = 0), the force deformation relation given by equation (2.33) simplifies to equation
(2.26a).
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Figure 2.4.—Elongation, 2, due to
axial force F in the bar.

Case 2: Bending of a beam.—The bending of a beam (see fig. 2.5(a)) involves the interaction of a bending
moment 7 and a shear force V (as shown in fig. 2.5(b)). However, in the energy expression it is customary to include
only the strain energy due to bending moment. Because the strain energy due to shear force is small, it is neglected
for simple structural mechanics applications without an appreciable adverse effect. By considering the beam shown
in figure 2.5(a) as an example, we can obtain the strain energy in flexure from equation (2.30) with the following
specialization.

Stress is calculated from the standard flexure formula, see appendix C. Stress ¢ at a location x along the beam
length and at a distance y from the neutral axis shown in figure 2.5(c) can be written as

S
y

4
7 (2.34)

where / is the moment of inertia of the beam cross section and 7 is the bending moment. The script % is used for
moment function at x as % or 7(x). The incremental volume dv for the beam with a uniform width b shown in figure
2.5(a) can be written as

dv=bdydx (2.35)

where dy and dx are incremental lengths along the depth and length of the beam, respectively.
When we substitute the stress from equation (2.34) and the incremental volume from equation (2.35) into the
energy expression given by equation (2.30), the following equation is obtained for the strain energy U? in flexure:

(1l (22 F oyl tm)F
Ub=J'_ ”_ j yay —j— J'EaATbydy (2.36)
2|\ " Er 1 El

0 -dr 0 -d/2
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Figure 2.5.—Simply supported beam.

where d, b, and ¢ represent the depth, width, and length of the beam, respectively. Bending moment for a beam shown

in figure 2.3(a), which produces compression in the top surface and tension in the bottom surface, gives rise to con-

cave, deformed shape. However, positive temperature at the top surface (and negative temperature at the bottom

surface) produce convex deformation in the beam. To account for the two opposite types of deformations, a negative

sign is introduced in the strain energy expression in equation (2.36).
The moment of inertia is defined as

dl2
[ y2ay
-dl2

Moment (M) due to thermal effect can be defined as

NASA/TP—2004-207430

di2
My = [ E@aT)pbydy
—d/2

20

(2.37)

(238)



The strain energy due to bending can be simplified by substituting equations (2.37) and (2.38) into equation (2.36) as

follows:
(w2 (mm
b iz Z— |- T W dx 23

Deformation B? due to a bending moment M is obtained as the first derivative of the flexural strain energy given
by equation (2.39), with respect to that bending moment M, as

i (2.40)

57 =V mo B o

_aub_i{wm MTa%}dx
0 EI oM EI oM

Likewise, deformation B~ due to shear force V (which produces bending, thereby contributing to the strain energy)
is obtained as the partial derivative of the flexural strain energy with respect to the shear force V as

b—s___
B v

» £
oU _Hmm MTawz}dx 2.41)
0 El oV EI oV
Case 3: Torsion of a uniform circular shaft.—We can obtain a strain energy expression for a uniform circular
shaft under torsion by specializing the strain energy formula given by equation (2.30) as follows:

(1) The Young’s modulus E should be replaced by the shear modulus G.

(2) The moment of inertia / should be replaced by the polar moment of inertia J.

(3) The normal stress ¢ should be replaced by the shear stress 7.

(4) The thermal coefficient o is set to zero because, for an isotropic material, the temperature effect does
not produce thermal shear strain.

The shear stress formula for the circular shaft shown in figure 2.6 can be written as

T T
—=— (2.42)
r J
where 7 represents the shear stress at a distance r from the neutral axis and 7 is the torque. Torsion as a function of x
is represented by (7= 7(x)). Strain energy due to torsion can be written as

Shear stress distribution (v = 7r/J) shown on enlarged cross section X-X.

Figure 2.6.—Uniform circular shaft subjected to torsion 7.
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1 a2 B ameda
US = j—_[ T arl g (2.43)
0

2)7 J
o
because J= J'21tr3dr
)
1¢7T
US==|—dx 2.44
5156 (2.44)

Deformation due to a torque 7 can be obtained as the derivative of the strain energy due to torsion with respect to
that torque T as

‘
U’ T 0T
S = === 2.45a
P oT 0 JG oT ¢ )
For a uniform shaft under constant torsion, the deformation in equation (2.45a) can be specialized for 7= T as
Tt
S = 2.45b
B G ( )
or B'=g, T (2.45¢)
where g is the flexibility coefficient due to torsion and it is defined as
=L (2.45)
8s 1G .

Illustrative Examples

The deformations induced by axial and torsional effects can be calculated by direct substitutions of axial force F,
torsional moment 7, and temperatures in equations (2.33) and (2.45b), respectively. For flexure, the deformation cal-
culations are also straightforward, but the coupling of bending moment and shear force has to be considered. Flexural
deformation calculations are illustrated for the beam shown in figure 2.7. As mentioned earlier, beam response requires
two internal unknown forces that can be either (1) two bending moments (M, M,), as shown in figure 2.7(a), or 2)a
bending moment (M) and a shear force (V), as shown in figure 2.7(b). We will derive the deformations for both cases.
For simplicity, the temperature effect will not be included here, but it is included in the examples given in chapter 3.

Case 1: Two bending moments (M, M, ).—For the beam shown in figure 2.7(a), M| and M, are considered to be
the two unknown moments at the ends (A and B) of a beam of length ¢, respectively. The reactions can be calculated
from the equilibrium conditions as

RA "—‘—RB =___f——— (246)
The moment at any point x in the beam axis can be written as
M, -M
M(x)= M, + —27—1— x=M;(1- %) +M, % (247a)
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(b) Moment M and shear V are the force variables. M4 and R4 are
the equilibrating reactions.

Figure 2.7.—Deformation in a beam.

The derivative of the moment 7% with respect to M, is

o7(x)
M,

(- %) (247b)

From equation (2.40), we can write the deformation due to the moment M| at location A as

{
y U 1 [ x) x}( x)
== M|1——|+M>, =3 1—— |dx 2.48
Pa =, EIO{I Al (2.45)
b (LM My
or BA‘(EI)( 376 )

The deformation Bﬁ represents the rotation at location A due to the action of both bending moments (M, M,). Like-
wise, the deformation at location B can be calculated as

B5 =

b
oU ¢ (Ml sz (2.48b)

M, EI\6 3
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The two flexural deformations ([Sz , [3%) can be written in matrix notation as

Bal__¢ [2 1M
{B%}—@I [1 2}{ Mz} (2.48¢)

or B} =[G1P {M} (2.48d)
¢ |2 1
[61” =@[1 2} (2.48¢)

where the (2 x 2) coefficient matrix [G1? is referred to as the flexibility matrix for the beam when M, and M, are con-
sidered to be the moment unknowns. In the FDR given by equation (2.48c), the deformations (BZ , B%) follow the sign

convention for associated moments (M, M,), which have opposite directions.

Case 2: Bending moment M and shear force V.—For the beam shown in figure 2.7(b), M and V are considered to
be the unknown moment and shear force at location B of the beam of length £. The reactions (R, M) at location A
shown in figure 2.7(b) can be calculated from the equilibrium conditions as

Ry=V and Myu=M+V{¢ (2.49)

The moment at any point x and its derivative with respect to the shear force V can be written as

M (x)=M+V({-x)

am(x) _
oV

(0—x) (2.50)

The deformation due to the shear force V at location B can be obtained from equation (2.41) as

4
y_ 9U" 1 - _
Bh =5 _EI!;{MW(Z )M —x)dx
v (1 me* v
or BB_(EI){—Z e } @51)

The deformation Bg due to the shear force V represents the displacement at B along the shear force V. Likewise, the

deformation due to the bending moment at location B can be calculated as

u Ut 1t
= e pp— V(¢ -
BY === jO{M+ (6-x)}(1)dx
or py _1fve + M (2.52a)
BT 2 '

The deformation [3%” represents the rotation at B.
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In matrix notation, the two deformations can be written as

BY Z(L) ¢ 2 [M}
Byl \EI)Ne2/2 A3V

or {8} =[G]"{F} (2.52b)
where G =L ¢ 272 (2.52¢)
Ell (272 373

The (2 x 2) coefficient matrix [G]?* is the flexibility matrix of the beam corresponding to the choice of force variables: a
moment and a shear force (M, V).

Flexibility Matrix

The relationship between the force variables and the deformation variables is established through the flexibility
matrix [G] as

{B} =[G1{F} (2.53)

The flexibility matrix [G] is a symmetrical matrix of dimension (7 X r), n being the number of force unknowns. For
axial force F and torque 7, the flexibility matrices become (1 X 1) matrices defined by equations (2.26b) and (2.45d),
respectively. For beam flexure, which involves two force variables, the flexibility is a (2 x 2) matrix. For the choice
of two bending moments (M, M,), the flexibility matrix is defined in equation (2.48¢). An alternative flexibility
matrix for a bending moment and a shear force is defined in equation (2.52c).

Summary

Analysis of an indeterminate problem requires the coupling of the equilibrium equations and the compatibility con-
ditions. The equilibrium equations can be obtained as a vectorial summation of internal forces and external loads. The
compatibility conditions can be calculated in two steps: First, the deformation displacement relations are obtained. Next,
displacements are eliminated from the deformation displacement relations to generate the compatibility conditions. Such
compatibility conditions expressed in terms of deformations are rewritten in force variables by using the force defor-
mation relations. The force deformation relation can be obtained from strain energy considerations. Together, the equi-
librium written in forces and the compatibility, also expressed in terms of forces, represent a sufficient number of
equations for determining the internal forces. Displacements, if required, can be back-calculated from forces.
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Chapter 3
Solution of Indeterminate Problems

In this chapter, the theory presented in the previous chapter is used to solve a number of indeterminate problems,
some with thermal loads and support settling. The basic steps that we will use follow:

Step 0—Solution strategy.

At the initial problem-formulation stage, the sign convention is specified, the force unknowns are identified, and the
displacement components are specified. The number of equilibrium equations, compatibility conditions, and degree of
indeterminacy are determined.

Step 1—Formulate the equilibrium equations.

Step 2—Derive the deformation displacement relations.

Step 3—Generate the compatibility conditions.

Step 4—Formulate the force deformation relations.

Step 5—Express the compatibility conditions in terms of forces.

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces.

Step 7—Back-calculate the displacements, if required, from the forces.

The solution of indeterminate problems requires the inversion of a square matrix, which, though trivial with a com-
puter, can become cumbersome for manual calculations. Since the objective here is to master the basic concepts through
manual solution, treatment will be confined to simple problems with small matrices. When the calculations become
involved, a computer can be used for the solution. The IFM for computer solutions is introduced in chapter 4.

Illustrative Example 1: Thermomechanical Solution for a Fixed Column

A column of length 3¢, shown in figure 3.1(a), is restrained at both ends. It is made of steel with 2 Young’s modulus
E of 30 000 ksi and a coefficient of thermal expansion.o. of 6x107° per °F. The cross-sectional area of its central span
(24) is twice that of its boundary spans, which have an area of A. Solve the problem for forces and displacements for
¢=101in., A =in.2, and the following three load cases:

Load case 1: A mechanical load (P, = 10 kips and P, = 20 kips) applied at the one-third and two-thirds span
locations, as shown in figure 3.1(b)

Load case 2: A uniform temperature variation (AT = 2000 per °F) along the central one-third span, as shown in
figure 3.1(c)

Load case 3: A uniform temperature variation (AT = 2000 per °F) along the entire length of the column, as shown
in figure 3.1(d)

Step 0—Solution strategy: The coordinate system is marked in figure 3.1(a), with the x-axis along the length of the
column. The model for the column, consisting of three axial bars and two nodes, is shown in figure 3.1(e). The problem
has three force unknowns (F, Fy, F;), one for each of the three bars, and two unknown displacements (X, X,), one for
each node, along the column x-axis. The column is one-degree indeterminate (r = n — m = 1) because there are three
unknown forces (n = 3) but two unknown displacements (m = 2). The column requires two EE and one CC for the deter-
mination of the three forces. To solve the problem, we follow the seven steps.
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Load case 1: Solution for mechanical loads.—
Step 1—Formulate the equilibrium equations: The two EE of the problem are obtained by summing forces along
the displacement directions (X;, X,), see figures 3.1(e) and ®).

EEalong X;, F-F-P=0 (3.11a)

EEalong X, F,—Fy—P,=0 (3.11b)

The EE in matrix notation ([B]{F} = {P}) can be rewritten as

I8
-1 o) [ Lo
0o -1 1J2["-m e
12

Because the two EE represent an insufficient number of equations to determine three unknown forces, one additional
CC is required.

Step 2—Derive the deformation displacement relations: The DDR, which are the main ingredients of the CC, are
obtained using the EE matrix as ({B} = [B1T{X}). For example, the kth DDR can be obtained as the dot product of the
kth column of the EE matrix [B] and the displacement vector {X}. The DDR for the problem has the following explicit
form:

Br=-X
Br=X1—-X;
Bsy=X, (3.12)

Step 3—Generate the compatibility conditions: The single CC ([C1{B} =0) for the problem is obtained by
eliminating two displacements from the three DDR as

By +B2+PB3 =0
By
or [1 1t 3B, ;=0 (313a)
B3
or [Cl=f1 1 1

The CC given by equation (3.1.3a) constrains the total elongation of the three bars to zero, which for the problem could
have been asserted by observation. Correctness of the CC can be verified from its null property ([BILC]T = [0]). For the

problem,
R P (313b
0o -1 1 . 1o 13b)
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The deformation {B} in the CC given by equation (3.1.3a) represents the total deformation. The total deformation is
the sum of an elastic component {3¢) and a thermal component (3%) as ( = ¢ + B"). For mechanical loads only, B = 3¢
because B’ = 0. The CC given by equation (3.1.3a) is written in terms of deformations, whereas the EE given by equa-
tion (3.1.1c) are expressed in forces. To couple the EE and CC, we need to write the latter condition in terms of forces;
for this purpose, the force deformation relations are required.

Step 4—Formulate the force deformation relations: The FDR for the three bars for axial force ([3 = %), given by
equation (2.33), are obtained as

10F
Barl, £=10, A=1; or Bl:(ﬂ.) 10K
AE), E
Bar2, £ =10, A=2; or ﬁzz(ﬂ) 3B
AE), E
Ft\ 10F;
Bar3,/=10,A=1;0or ﬁ3 =(—€j = 03 (3.1_4)
| AE); E

Step 5—Express the compatibility conditions in terms of forces: The CC given by equation (3.1.3a) can be
expressed in terms of forces by using equation (3.1.4):

10 d
=0 12 iR ={0} (3.15)
F

In the homogeneous CC given by equation (3.1.5), the coefficient (10/E) can be set to unity without any consequence.

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The EE given by equation (3.1.1c) are coupled to the CC given by equation (3.1.5) to obtain the IFM equa-
tions for the problem:

-1 1 0|[R)] (-A
0 -1 1{E ={-P, (3.1.6)
1 1/2 1]|F 0

Solving equation (3.1.6) for P| = 10 kips and P, = 20 kips yields the forces as

Fl case 1 14
28 =l 4 (3.17)
F ~16

kips

Step 7—Back-calculate the displacements, if required, from the forces: The two displacement components can be
calculated from the DDR and FDR given by equation (3.1.2) and (3.1.4), respectively. Any two of the three DDR can
be used for calculating displacements from forces. We use the first and third deformations in equation (3.1.2) to calcu-
late the two displacements as follows:
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10F, _
X; =B, =—T1=—4.67x10 3 in.
10F. _
X, =P :—Ei= -533x107 in. (3.18)

Because of the compatibility compliance, the satisfaction of the remaining DDR (B, = X; - X,) can be verified.

5F.
By =22 =0667x107> in.
E
and X, — X, =0.667x107 in. (3.1.9a)
Thus, By =X; - X, (3.1.9b)

The displacements (X;, X,) are along the negative x-axis, or along the loads (P}, P,), as expected.

Load case 2: Central span thermal load.—Solution for thermal effect follows the procedure for mechanical loads
with nontrivial {8R} in CC. Both thermal and mechanical deformations have to be included in the definition of total
deformation. Deformations including thermal effects (case 2, when the temperature increases in the midspan by
2000 °F) are as follows:

Thermal deformations,

Bi=0 PL=o0AT¢=012 B5=0 (3.1.10)
o .
or {8'}=1q012
0

Total deformations (B = ¢ + B,

poeet (2 LA
! AE), E

SF
B ==2+012

10 F-
™2 = —E—3 (3.111)
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The effective initial deformation vector can be calculated as

{sr}=-{c1{p'}

0
=-{1 1 1]5012;={-012} (3112)
0

The CC given by equation (3.1.5) can be rewritten incorporating the thermal effect {6R} as

K
%[1 1/2 1k Fp p ={-012} (3113)
B

The left side of equation (3.1.13) is identical to equation (3.1.5), but its right side is replaced by the equivalent thermal

load (B8R =—[C}{p'}). Earlier in the homogenous CC in equation (3.1.5), the coefficient (10/E) was set to unity without
any consequence. However, in the presence of thermal loads, the coefficient has to be retained since the CC in equation
(3.1.13) is not homogeneous. The solution for thermal load, case 2, is obtained by incorporating the following changes

into equation (3.1.6):

P, =P,= 0 since there are no mechanical loads.

(E-{SR}) = Q12 _ 569 (3.1.14)
10 10
-1 1 o)A 0
0 -1 1KFR:=50
1 1/2 1R [-360
A case 2 144
or Fy = —<144 (3.115)
F 144} i

Step 7—Back-calculate the displacements, if required, from the deformation displacement relations: Displace-
ments are back-calculated from any two of the three DDR as

10,
X, =B, :_Tl =0.048 in.

_10F,

Xy =By =—2 =-0048in. (3116)

In the displacement calculation, thermal strain is bypassed because deformation in the first and third bars, 8, and B, are
not explicitly affected when the central span temperature is increased.
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Let us calculate deformation B2 by using the FDR (eq. (3.1.11)) as well as the DDR (eq. (3.1.2)).
From the DDR equation (eq.(3.1.2)),

Br=X;—-Xo or B, =0.096 (3.1.17)
From the FDR equation (eq.(3.1.11)),

SF:
B, =—E2—+0.12=—0.024+0.12=0.O96 3.1.1D)

Deformation (f,) calculated from both the DDR and FDR agreed, as expected. The central span expands because of
an increase in the temperature, resulting in a positive displacement (X,) at node 1 and a negative displacement (X,) at

node 2. Because of symmetry, |X;| = [X,|.
Load case 3: Uniform thermal load.—Uniform thermal increase (AT = 2000 °F), case 3, can be solved by follow-
ing the procedure shown for thermal load, case 2. Deformations due to thermal effects, case 3, are as follows:

10 A 10 F
case3 — — L+ (0ATY), =— Lio12

SF
e’ = —E?-—+0.12

10 F-
Bgase3 _ E3 +0.12 (3.1.18)

The CC and the effective initial deformation vector {R} are calculated as follows:

Bk

10

—5[1 1/2 1) F,  =-0.36 (3119)
F

The IFM equation (3.1.15) is modified by incorporating SR for case 3 to obtain

Fl case 3 432
or F, = 1432 (31.20)

F 432} s
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Step 7—Back-calculate the displacements, if required, from the deformation displacement relations: Displace-
ments are calculated from any two of the three DDR as:

10,
X;=-By = —(——E—1+0.12) =0.024

X, =B =-0024 (3.1.21)

The uniform thermal expansion induces a positive displacement (X,) at node 1 and a negative displacement (X,) at
node 2.

Simultaneous solution.—The thermomechanical response for combined thermal and mechanical loads can be
obtained by superposing mechanical and thermal solutions. An efficient alternative, however, is to combine both
mechanical and thermal loads together in the calculation of forces. In this example, for clarity, mechanical and ther-
mal loads are treated separately. The solution procedure illustrated for this simple example is quite general and
applies equally well to other problems, irrespective of their complexity.

Proration rule—For mechanical loads only, when the force vector is multiplied by a constant factor, the displace-
ments are prorated by the same factor, and vice versa. For thermal loads, however, this constant proration rule need not
apply. Take, for example, the forces given by the thermal loads for cases 2 and 3, which differ by a factor of 3:

Fl case 2 Fl case 3 432
3E = B = —{432 (31.22)
28 28 432

However, for the two thermal load cases, the displacements do not differ by a factor of 3:
X case2 0.144 X, el 0.024 1123
= # = L
X, -0144 X5 —-0.024 ( )

Illustrative Example 2: Propped Cantilevered Beam Under a Uniform Load

A propped cantilevered beam of length ¢is subjected to a uniformly distributed load of intensity g per unit length
as shown in figure 3.2(a). The beam, which is made of steel with a Young’s modulus E of 30 000 ksi, has a depth d
of 2 in. and a width b of 1 in. Solve the problem for forces and displacements.

Step 0—Solution strategy: For this problem, conventional coordinate axes (x, y) and the origin at A are defined
in figure 3.2(a). In addition, the abscissa (X )with its origin at B is defined because this choice reduces some calcula-
tions. We solve the problem by considering three reactions as unknowns (n = 3). These are the moment M and shear
force V at the fixed support and the shear force R at the hinged support (see fig. 3.2(b)). For the beam, two overall
equilibrium equations—one rotational EE and one transverse EE—can be written (m = 2). The dual, or displacement,
variables associated with the rotational and transverse EE are 8 and v, respectively. The problem is one-degree
indeterminate because r = n —m = 1. The displacement function w(x) is calculated because of the distributed nature
of the load g. Since the beam is uniform, the solution is obtained in terms of EJ, where I is the beam’s moment of
inertia.
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g per unit length

Y4
I
Ao F 81 [
L% ¢
1 | Enlarged
cross section
(a) Beam under load q. X-X

<
l><|
~<I

v v v v iR

| iy

| x I

{b) Forces acting in the beam.

Figure 3.2.—Propped beam under uniform load.

Step 1—Formulate the equilibrium equations: Summation of the moment and shear force provides two EE in
terms of three unknown forces (V, R, M). Rotational or moment equilibrium at the hinge point B yields the first EE.

(2
M-Vi+ i’z— =0 (321
The force equilibrium along the transverse direction is the second EE:
V+R—gl{=0 (32.2)
The two EE in terms of the three reactions (V, R, M) can be written in matrix notation as
¢ 0 -1 qt*
Rt={ 2 (323)
-1 -1 0 .,

The equilibrium equations are one-degree indeterminate because three unknown reactions (V, R, M) are expressed in
terms of two equations. One compatibility condition is required to solve the problem.

Step 2—Derive the deformation displacement relations: The DDR ({B} =[B}7{X}) have the following form:

By ¢ -1
B, r=| 0 ~1 {V} (3.2.4)
Bm -1 0

In the DDR, the deformations (B,, B, B,,) correspond to the reactions (V, M, R), respectively. The displacements
(8, v) are the dual variables of the moment and transverse equilibrium equations, respectively.
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Step 3—Generate the compatibility conditions: The single compatibility condition is obtained by eliminating the
two displacements (0, v) from the three DDR:

By
1 -1 (KB, r={0} (3.2.5)
Bm

The correctness of the CC can be verified from its null property (B CY=[0]):

£ 0 -1 ! 0
-1|= (3.2.6)
RN HS

Step 4—Formulate the force deformation relations: We can express the compatibility conditions ({C]{B} = 0) in
terms of reactions by using the FDR, which can be obtained as the derivatives of the strain energy U as given by
equation (2.40).

U 7}{8%

By = oV JoEI oV

X i
foEI JdR o

W _(‘mom

——— 3.2.7
P = oM JoEl oM ( )

where the strain energy U for the beam can be written in terms of moment 7% as (see eq. (2.39))

£ 2

KA
U= 328
-([ 2E1 ( )

For strain energy calculations, either point A or B (see fig. 3.2(b)) can be selected as the origin without any adverse
consequence. When point A is selected as the origin, the moment (7Z(x)) has to be written in terms of two unknowns
(M and V). However, when B is selected as the origin with an axis X from B to'A as shown in figure 3.2(b), the
moment (7%(37)) can be written in terms of a single reaction unknown (R). To reduce the number of calculations,
we select B as the origin with axis X . The reader, however, could select the conventional axis x and arrive at the
same results.

(%) = R% — % (3.2.9)
The derivatives are 0%%/0V =0, dM/0R = x, and 07%/9M = 0. Thus, the deformation B =, = 0. The

deformation f3, can be calculated as

¢ -2
I I
Br=— 2[[Rx : J(x)df (3.2.10)
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Upon integration, the deformation is obtained as

1 (R g¢*
Br=1—5;[———3 ~ié—] (3211

Step 5—Express the compatibility conditions in terms of forces: In terms of force variables, the compatibility
condition can be written as

or [0 1 0kR{="— (32.12)

Notice that the CC, which is an uncoupled equation, is nonhomogeneous because of the distributed nature of load g.

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The compatibility condition can be coupled to the equilibrium equations to obtain three equations in terms
of three unknown force variables:

2
£ 0 -1 ||V i
2
-1 -1 0 KRy=q-¢gf (3.2.13)
0 1 0 ||M zg—{

o[22
8

R:= ﬁf_ (3.2.14)
8
2

ul |2
8

The moment function (X ) given by equation (3.2.9) can be rewritten in terms of load g as

3qix_gx’

wR=Te T

Step 7—Back-calculate the displacements, if required, from the forces: Because the load is distributed along the

span of the beam, the transverse displacement is a function of x ; that is, w(¥). The moment curvature relation
(x(x)) has to be integrated to determine the displacement function w(Xx).
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Elementary Derivation of the Moment Curvature Relationship

The moment curvature relationship derived in standard strength of materials textbooks is reviewed for com-
pleteness. For a beam oriented along the x-axis and with the transverse displacement w(x), the curvature defined in
elementary analytical geometry textbooks can be written as

d*w

2
I S (32.15)

(=]

where p = 1/|} is the radius of curvature. In simple beam analysis, it is assumed that the square of the rotation
(dwl/dx)? is much smaller than unity; thus, the denominator is set to unity, and the curvature ¥ simplifies to

K= e (32.16)

Curvature is the deformation associated with the bending moment 7. Their product represents strain energy U. The
strain energy due to flexure can be written as (see eq. (2.39))

74 £ 2
Ub:lj mdi=2| i (3.2.172)
2 ) 2}, E
10 =
or —j (K‘— q) Mdx=0 (3.2.17b)
2Jo\ EI

Since the moment function (7%) is arbitrary and is not a null function,

_»@_dzw

=—F 3218
B g2 ( )

This simplistic derivation is sufficient because the process provides the moment curvature relationship. For the prob-
lem, the moment curvature relation can be written as

L d*w(x) _ m (1Y 3q65 gE>
R ‘5‘(5)[7 B 3219

Integrating the moment curvature relation yields the displacement function:

-3 4
w(x) = %(‘ﬂx 9 +clf+czj (32.20)

The integration constants in the displacement function can be determined from the kinematic displacement
boundary conditions, which are essential for the stability of the structure. The number of kinematic conditions N,
can be calculated as the difference between the total number of displacement boundary conditions N, and the
number of compatibility conditions r:

Nkb(,‘ =Ny =T (3221)
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For this problem, N, = 3, r = 1, and N, . = 2. The three displacement boundary conditions are

BC-1 = w(Xx)=0 a x=0
BC-2 = w(®)=0 a x={

s
BC-3 = %(x—):o at ¥=1 (3.2.22)

Any two of the three displacement boundary conditions are sufficient for determining the two constants of integration
(¢4, ¢,) in equation (3.2.20). The boundary conditions (BC-1) and (BC-2) are used to determine the constants, as
follows:

C2=0

€3
o =- % (32.23)

The displacement function has the following explicit form:

-3 —4 3o
w(F) = | 954X _atx (3.2.24)
EI\ 16 24 48

The reader can verify the compliance of the slope boundary condition (BC-3) at the fixed end.
The maximum displacement can be determined from principles of calculus as

0.0054g¢*

Wiax =~ At ¥=04215¢ (3.2.25)

where w is considered to be positive along the y-axis. The load ¢, however, is along the negative axis, which is also
the direction of displacement; or displacement is along the negative y-axis.
Maximum slope, which occurs at the propped end at x =0, is

_=q’

L 3.2.26
max A8 El ( )

d dw
The slope (—d% =- 7) is positive along the positive z-axis (which also represents the negative 7 - axis). Likewise,
X

the maximum value of the bending moment is

= a ¥= (32.27)
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Ilustrative Example 3: Two-Span Beam Under a Uniform Load

A two-span beam of length 2¢is subjected to a uniformly distributed load of intensity g per unit length, as shown
in figure 3.3(a). The beam, which is made of steel, has a Young’s modulus E of 30 000 ksi, a depth d of 2 in. and a
width b of 1 in. Solve the problem for forces and displacements.

Step 0—Solution strategy: For the problem, the coordinate system (x, y) is defined with its origin at A (see fig.
3.3(a)). Also, to reduce calculation, another abscissa (X) is defined with its origin at C, see figure 3.3(b). The prob-
lem is solved by considering three reactions (R, R,, R;) as the unknowns, or n = 3 (see fig. 3.3(b)). Since the beam
is uniform, the solution is obtained in terms of EI, where 7 is the moment of inertia. The three unknown reactions can
be reduced to two because of symmetry (R4 = R;), which reduces to n = 2. Because the condition of symmetry is
used, both rotational and transverse equilibrium yield the same single, independent EE, or m = 1. The single dis-
placement unknown considered is v along the y-direction. The problem is one-degree indeterminate (r=n—m = 1).
The seven-step procedure is followed to solve the problem.

y
g per unit length y )
EEEE + EERNE |
3
‘‘‘‘‘‘‘‘‘‘‘‘ X d = 2in.
A
Q00
I ¥:=:555=|=5:55-=- ‘bt-‘ in
: ¢ ' ¢ : Enlarged
cross section
X=X
(a) Beam.

ty
}i***++f+{

4 } "4

(b) Unknown reactions.
IR,
f—x

(c) Moment, #2(x).
Figure 3.3.—Two-span beam under uniform load.
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Step 1—Formulate the equilibrium equations: Since the condition of symmetry has already been used, only the
transverse equilibrium is considered:

2Ry +Ry, —2g£=0 331)

The reader can verify that the moment equilibrium condition does not produce any additional independent EE. In
matrix notation, the single EE can be written as

Ry
-2 -1k p={-2¢4} (332)
Ry
The equilibrium equation is one-degree indeterminate because two unknown reactions (R;, R,) are expressed by a

single EE. One compatibility condition is required to solve the problem.
Step 2—Derive the deformation displacement relations: The DDR ({ B} =[B] T{X}) has the following form:

By =-2v

By =-v (33.3)

In the DDR, the deformations (8,, B,) correspond to the reactions (Ry, R,), respectively. The displacement v along
the y-direction is the dual variable associated with the transverse EE.

Step 3—Generate the compatibility conditions: The single compatibility condition is obtained by eliminating the
single displacement v from the two DDR:

[t —2]{61 } ={0} (33.4)
B2

The correctness of the CC can be verified from its null property (IBI[C1T=0).

[-2 —1]{_;] =[0] (33.5)

Step 4—Formulate the force deformation relations: The force deformation relations can be obtained as the
derivatives of the strain energy U as

L
o U _2 (' om,
R, EI), R

!
B, =Y 2 % (336)
3R, ElJ, R,

The strain energy function U for the beam has the following familiar form:

L2
YA
U= 2J' 7 ix (337)
2EI

0
Because of the symmetry condition, the coefficient 2 and the fimits of the integral (0 — &) for a single span are used in
equations (3.3.6) and (3.3.7). The strain energy stored in the structure is twice that of each span. For the calculation
of the strain energy, we can select either point A or C as the origin without any consequence. The moment at any
point x from origin A can be written as (see fig. 3.3(b))
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2
(x) = Rlx—%— (338)

The derivatives are 7/0R, = x and 97%/0R, = 0. Thus, the deformations (B, =0) and (B,) from equation (3.3.6) can
be written as

Br=— [Rlx—gﬁ (x)dx
0

2 (R gt
or == 339
B1 EI( 3 2 (33.9)

Step S—Express the compatibility conditions in terms of “forces: The compatibility condition is obtained in terms
of reactions by eliminating deformations between equations (3.3.4) and (3.39) as

3 4
_2_[[_ OHR.I } = {fﬂ—} (33.10)
Ell 3 Ry 4E]
Notice that the CC, which is an uncoupled equation, is nonhomogeneous because of the distributed nature of load g.
Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The compatibility conditions can be added to the EE to obtain two equations in terms of two unknown
reactions as follows:

-2 -1(R —2q!
gt (3.3.11)
1/3 0| R )
Solution of the equation yields the two reactions as
= (3.312a)
IR
S
4
From symmetry, Ry =Ry = 3% (3.3.12b)
The moment function 7#(x) for the first span AB can be written as
%(x)—%—i)i (33.13)
g > 3.
The moment at the central support B is obtained for x = £ as
62
Mp = __‘18_ (3314)
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Step 7—Back-calculate the displacements, if required, from the forces: Because the load is distributed along the
span of the beam, the moment curvature relations (derived in Illustrative Example 2) can be integrated to obtain the
displacement function w(x). For the first span AB,

d 2
k()= LvW _ 7 (3315)
dx’ EI
The displacement function w(x) for the first span is obtained by integrating the moment curvatures relations as
d 2 2
wix) _ 1| 3glx_ gx” (3316)
dx EIl 8 2
Integration yields the displacement function as
3 4
1 | gfx gx
=—|——-—+cjx+c 3317
W) EI[ 16 24 ! 2] G317)
For the problem, the three displacement boundary conditions are
BC-1= w(x)=0 at x=0
BC-2= w(x)=0 at x=/{
BC-3= w(x)=0 at x=2/ (33.18)
For span AB, the boundary conditions BC-1 and BC-2 are used to determine the two constants as follows:
Cy = 0
3
qf
e =——— 3319
1 13 ( )
The displacement function for span AB has the following explicit form:
1 y 3 4 3
wix) = | 4o x4t x (33.20)
EI\ 16 24 48
d 2 3 3
Slope, wix) _ 1 [3qfx” gx” _gf”
dx EIy 16 6 48
3
Slopeat x = 0, aw _ar
dx| 48E1
Slope at x = £, L2 — (3321)
& L
X =
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Because of symmetry, the displacement function given by equation (3.3.19) can be used for the second span by using
the alternative abscissa (X) as shown in figure 3.3(b).

Ilustrative Example 4: Continuous Beam With Support Settling

A two-span, continuous beam that is made of steel with a Young’s modulus E of 30 000 ksi is subjected to a
load P at the center of its second span as shown in figure 3.4a. The moment of inertia of the uniform beam is
I =100 in.# Solve the problem for forces and displacements for the following two load cases:

Load case 1: Mechanical load P only
Load case 2: Settling of the central support, A =0.25 in.

Load case 1: Solution for a mechanical load.—

Step 0—Solution strategy: The coordinates (x, y) with origin at A are shown in figure 3.4(a). The beam is mod-
eled into three spans. The free-body diagram of the beam is shown in figure 3.4(b). Each beam span has two moment
unknowns; thus the structure has six unknown moments (M, My, ..., M6), or n= 6. The problem has five unknown

I i
A C D

* -
A
nE

I<——a—>

>/

2a

2a

(a) Support settling in A inches.

—z )LH

?RA Mo - My My~ M2 ~-M3 -My M5 5 ?
2a 2a RB 3 K a a Rp

O |a—-
U
/—\\

{b) Free-body diagram.

M; M;
(‘ |
¢
x |
M;= M M;-M;
¢ ¢

(c) Moments used to derive the force deformation relations.
Figure 3.4.—Two-span beam with setting support.
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displacements, or m = 5. These are the slope 8, at support A, slope 0, at support B, displacement v under load at C,
rotation 65 at C, and rotation 8, at support D. Five equilibrium equations can be written along the five displacement
directions. The problem is one-degree indeterminate because r =n—-m=1.

Step 1—Formulate the equilibrium equations: The five EE for the problem are written along with five displace-
ment directions as follows:

Along 6; = X at support 4, M =0
Along 6, = X, at support B, My +M3=0

(M3-M,) (Mg—-Ms)

Along v{ = X;under load at C, - - -P=0
a a
Along 65 = X under loadat C, Ms—-My =0
Along 84 = X5 at support D, Mg =0 34.1)

The five EE ([B]{F} = {P}) can be written in matrix notation as

-1 0 O 0 0 0 |[M, 0
01 -1 0 0o 0 |[M| |0
0 0 1/a -1/a -1/a 1/al|{M;z|=<-P 34.2)
00 0 1 -1 0 ||M,] o
00 0 0 o 1 ||Ms] |o
Mg

The five EE in equation (3.4.2) are not sufficient to determine the six moments; thus, one additional CC is required.
Step 2—Derive the deformation displacement relations: The DDR ({8} = [BIT{X}) yield

X3

Br=-X; Pa=——+Xy4
a
X3

B2 =X, Bs=——-X4
a

X X
B3 =—X2+73 Be =73+X5 (34.3)
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Step 3—Generate the compatibility condition: The single CC for the problem is obtained by eliminating the five
displacements from the six DDR:

2B, +2B83+B4 +B5=0

B1
B2
B3
B4
Bs
Bs

or [0 2 211 0} t=0 (3.4.4)

The correctness of the compatibility condition can be verified from its null property ([B] (T = [o).

-1 0 O 0 0 0] (2) 0
0 1 -1 0 0 0 5 0
0 0 1/a —-l/ia ~lla 1l/a e 0 (34.5)
¢ 0 O 1 -1 0 0
0 0 0 0 0 1 ! 0
10

Step 4—Formulate the force deformation relations: The FDR for a beam with the end moments derived earlier in
equation (2.48) are used. For end moments M, and M 2 the FDR shown in figure 3.4(c) can be written as

£
Bi =6—E-I—(2Ml +Mj)
By = (M +21;) (3:46)

For element AB, the span is 2a, the end moments are M, and M,, and the deformations are B, and B,. The FDR
can be written as

2a
=—(02M;+M
By 6EI( |+ M)
2a
B, = = (My +2M,) 347

Likewise, for element BC with span a, end moments M5 and M, and deformations f3; and f,, the FDR can be
written as

a
= (2M;+M
B3 6E1( 3 +My)

a
=2 (M.+2M 4.
Bs 6E1( 3+2My) (3.4.8)
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For element CD with span a, end moments M and M, and deformations 5 and B¢, the FDR become

a
=—2M:+M
Bs 6EI( 5 +Mg)
a
=—(M: +2M 349
Be 6E1( 5 6) (3.4.9)

Step 5—Express the compatibility conditions in terms of forces: The compatibility condition is expressed in terms
of moments by eliminating deformations between the CC given by equation (2.18) and the DDR to obtain

L (4My +8Mo +5M3 +4My +2Ms5 + Mg) =0 (3.4.10)
6EI 1 2 3 4 5 6

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The EE and CC are coupled to obtain the following IFM equation:

-1 0 0 0 0o 07(Mj) [0
0 1 -1 0 0o 0 ||My| |0
0 0 1/a -1/a -1/a 1/a||M3| |-P
- (34.11)
o0 0 1 -1 0[lM[ o
0o 0 0 0 0 1 ||Ms| |0
4 8 5 4 2 1| (M) |0

Because of the sparsity of the matrix, the equation is solved easily to obtain the moments:

My =0 My = 3Pa = 311;61 My = lil;’a Ms = liiz’a

Mg=0 (3412
The reactions are obtained by writing the EE along the restrained directions at supports A, B, and D (see fig. 3.4(b)):

_My-My _3p

At support A, Ry 0 or Ry=—— (3.4.13a)
2a 32
My-M, My-M
At support B, Rp-—L——2_ 4" 73¢9 o Ry =1L (3.4.13b)
2a a 16
Ms—-M
At support D, Rp-—2-"% -0 or Rp = % (3.4.13¢)
a

We can verify that the sum of the reactions (R, + Rp + R = P) is equal to the applied load P.
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Step 7—Back-calculate the displacements, if required, from the forces: The deformation displacement relations are
used to calculate the displacements. The displacement X under load P is related to the deformations (B4, Bs) as

a
X3= —5(ﬁ4 +Bs)
a 23 Pa?
also, +B5 =—— (M3 +2M4 +2Ms+ Mg) = 34.14a
BatBs=of (M3 4 5+ Ms) SeEl ( )
P 3
or Xy =22 Fa_ (3.4.14b)
192 EI
The displacement X; is along the negative y-direction. Likewise, other displacements are calculated as
2aM, Pa’®
Rotation at support A, Xi=-P=r—7"= 3.4.14c
i upp 1 =P S5 - 16El ( )
4aM,  Pa*
Rotation at support B, Xy =PBs = = —_— 3.4.14d
ppo 2 =B =—r T ( )
Rotation under load at C Xy =2(Bg—Bs)=—— a” (3.4.14¢)
’ MY o
: 1 3pPa’
Rotation at support D, X5 = 5 (Bs+Bs+2Bg)= TeEl (3.4.141)

Load case 2: Solution for support settling.—To simplify the calculation, we assume the mechanical load to be
absent (P = 0) and solve the problem for the settling of supports only. Support settling is accounted for in the right
side of the compatibility condition in the {SR} term.

{5} =-[c}B}° (3.4.15)

where {B}0 = —(B,}X = {B, }A because X = —A (see eq. (2.14d)).
The column vector {B,} is associated with the EE at support B along the direction of settling A, which for the
problem is along reaction Rp. The reaction Ry can be written in terms of moments (see eq. (3.4.13b)) as

1/2a 1T (M,

—1/2a M2

T -1/a M3
Rp={B,} {F}= \a M, (3.4.16)

0 Ms

0 Mg
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1/2a
-1/2a
0 —l/a
{B}" =arB =485 (3.4.17a)

0

0

sRj=-ClB)° =0 2 2 11 o))’ =2 (3417

The IFM governing equation can be rewritten by adding {8R} and setting the mechanical load to P = 0 as

-1 0 0 0 0 0 M, 0 )
0 1 -1 0 0 0 M, 0
0 0 1/a -l/a -1/a 1/a M 0
= (3.418)
0 0 0 1 -1 0 My 0
0 0 O 0 0 1 Ms 0
4 8 s 4 2 1 ||lMg) |22
a
The IFM equations are solved to obtain the moments:
M1=O
3EIA
My =Mz =—
4a
3EIA
M4 =M5= 2
8a
Mg =0 (3.4.19)
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Reactions are back-calculated as

M, 3EIA
RA = —2-— = 3
a 8a
M Mys-M
Rg = M, M, 3__ 3E13A
2a a 4a
M El
Re=—2= 3 3A (3.4.20)
a 8a

In the absence of mechanical load (P = 0), the sum of the reactions (R, + Ry + R = 0} is zero, and symmetry about
support B is maintained (R, = R ). The settling A along the negative y-direction induces positive reactions at support
B but negative reactions at supports A and C.

Calculation of displacement.—To calculate the displacement for the settling of supports, we decompose the total
deformation {B} that gives rise to the displacement into an elastic component (B}¢ and an initial component {B}° as

{B}={B}* +{B}° (3.421)

The elastic deformation {}¢€ s calculated from the moments and initial deformations, and {[3}0 is determined
from the support settlement given by equation (3.4.17a). The total deformation obtained as the sum of the two
components is as follows:

2aM, A o A 0y 3A
€ — = = — = = ¢ + = e
Bl == =1 BY =5 Bi=(Bf +B7) ="
2aM A A
e 2 0
= = — = —— =0
P2 == "2 P2="2 P>
5A o A 11A
¢=2 (M5 + 22 === .
B35 (2M3+My) T6a 3= B3 ™
. a 0o A 5A
=2 (My+2My)=— == ==
P4 6EI( 3 4) a P4 a Ba 4a
e aM5 A 0 A
= = — =0 -
BS =35 " %a Ps Ps =
e aMs A 0 A
- == =0 = 3.422
Ps =551 ~T6a P Ps = Tea (34.22)
Rotation at support A, X =-PB1=- -i—é (3.4.23a)
a
Rotation at support B, X, =B, =0 (3.4.23b)
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Rotation at C, Xy = — (3.4.23¢)
2 16a
Displacement at C, X;= ——;- (Bs+Bs)= —% (3.4.23d)
. 1 3A
Rotation at support D, X5 = E(B4 +Bs +2Bg) = W (3.4.23¢)
a

The symmetrical support settlement yields symmetrical displacements. The rotation, or slope, is zero at the
center support B, 6, = X, = 0; and the rotations are equal in magnitude, with opposite signs, at A and D, 6, = X, =
-8,=-X

4 5

Hlustrative Example 5: Propped Beam for a Mechanical Load, a Thermal Load,
and Support Settling

A uniform propped beam of length 2a with a moment of inertia I of 100 in.* is made of steel with a Young’s
modulus E of 30 000 ksi. It is subjected to a load P at the center span as shown in figure 3.5(a). Solve the problem
for forces and displacements for the following load cases.

Load case 1: Mechanical load P only.

Load case 2: Thermal load—Temperature is assumed to be uniform along the length of the beam. Along the
depth, the temperature variation is linear, with values 7, and 7, at the upper and lower surfaces, as shown in
figure 3.5(b).

Load case 3: Settling of the simple support A by the amount A.

Load case 1: Solution for a mechanical load.—

Step 0—Solution strategy: A coordinate system (x, y) with its origin at A is shown in figure 3.5(a). A second
coordinate system (X, y) with its origin at B (see fig. 3.5(a)) is also selected to reduce calculations. The beam is
divided into two elements. Two moments are selected as the unknowns for each element. The beam has four moment
unknowns (M, M,, M3, M,); thus n = 4. The beam has three displacement unknowns—rotation at support A and
rotation as well as transverse displacement at B, or m = 3. Three equilibrium equations can be written for the beam.
The beam is one-degree indeterminate, or r=n—m = 1.

Step 1—Formulate the equilibrium equations: Three equilibrium equations can be written for the problem (see
fig. 3.5(c)).

(1) Rotational EE at support 4, M; =0 (35.1a)
(2) Rotational EE at B, ~My +M5 =0 (35.1b)
M -M, M,-M
(3) Transverse EE at B, -( 1~ 72, 74 73, P) =0 (35.1¢)
a a

We can simplify the three EE to a single equation by using the condition M; = 0 and replacing M, in favor of M,:

[2/a 1/a]mj]= [-P} (352)

The single EE is expressed in terms of two unknown moments. The problem is one-degree indeterminate, and one
CC is required for its solution.
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Figure 3.5.—Propped beam with settling support.
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Step 2—Derive the deformation displacement relations: The two DDR ({ B}= [B]T{X}) are as follows:

2v
Br=——

a

14
Bg=~ (3.53)
a .
The deformations (B,, B,) correspond to the moments (M,, M,). The transverse displacement v at B is the dual vari-

able of the transverse EE at B, and it is considered to be positive along the load P, or negative y-direction.
Step 3—Generate the compatibility condition: The single CC is obtained by eliminating the displacement v from

the two DDR as

B2+2[34=0

or [1 2] {Ez} =0 (3.5.4)
4

The null property of the CC and EE matrices (IBILCIT = [0]) can be verified as

1
[—2 /a 1/ a] [2] =[0] (33.5)
Step 4—Formulate the force deformation relations: The FDR for the structure are obtained as

2a
Eldo 7 oM,

By
1 29 om

- (w4 3.5.6
e “am, © (3.56)

B4

For span AB.
om(x) x o7 (x)
2 =0 357
BM2 a 8M4 ( )

M
M(x)= —2Zx
a

For span BC, the origin of the coordinate system is selected at B, and X is measured from B to C (see fig. 3.5(a)).

mE) _ | X M) _x (358)
a

My-M
ME) =—2"2F+ M,
a - oM, a oM,

The deformation 3, can be obtained by adding contributions from spans AB and BC as follows

1 |re o% 2a_ 0%
= m = a M dx | = 5.
P2 EI{-[O M, x+L M, } Ath ©->9)

The first part of the integral for span AB becomes

(Y (M2 (%), _aMo
P —(EIM()[ - xj(a]dx_ o (3510)
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We evaluate the second part of the integral for span BC by using the (X, i) coordinates as shown in figure 3.5(a).
We change the integration limit from (a to 2a) to (0 to a) and calculate the moment 7(x ) using the origin at B:

= (i] Ja{(M) (%) +M2} (1—9 dx = 6%1 (2My + M) (35.11)

EI 0 a
a
or =—(4M, +M 3.5.12
B 6EI( 2+ My) ( )

Likewise, we can calculate the deformation B, by adding contributions from both spans:

2
(BT g [ P,
0 oMy a oMy
-1
T EI

OOy TR

= (M, +2M 3.5.13
6EI( 2 4) ( )

1
B4=E{

Step 5—Express the compatibility conditions in terms of forces: The CC in deformations (B, + 2B, = 0) can be
expressed in terms of moments by eliminating deformations in favor of forces between the CC and the FDR. The CC
expressed in terms of moments has the following explicit form:

a
—(6M, + 5My) =0 3.5.14
6EI( 2 4) ( )

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The EE and the CC are coupled to obtain the following IFM equation:

—2/a 1lal[M, -P
= (3.5.15)
6 5 |IMy 0
The solution of the IFM equation yields the moments:
_SPa
716
M, =->Fa (3.516)
8
Other moments (M, M) are obtained by inspection:
Ml = 0
P
My=M, = 51—6“ (35.17)
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Reactions (R4, R) at the support are back-calculated as

M P
At support A, Ry="42= R (3.15.18a)
a 16
M, -M 11P
At support C, Rp=—2—"%-—— (3.15.18b)
a 16
Step 7—Back-calculate the displacements, if required, from the forces: Displacement v under load P is
2 3
a 7Pa
= =——(2M, +M5)=- 3519
v=aby = o OMa tMa) = =50 (3:>19)
Displacement v is verified by recalculating it from the DDR (B, = -2v/a) as
af, 7Pa’
v=—==- (3.5.20)
2 96EI

The deformations (B,, B) are not required to determine moments; thus, those calculations were not necessary.
However, these two deformations are required to determine the rotations at support A and at load application point B.
The two deformations and the two rotations can be calculated from deformation moment relations and the DDR. The
deformations (B, B;) can be calculated from deformation moment formulas as

2
a 5Pa
For span AB, =—02M; +M5)=
P P 6EI( 1+M2) 96El
Likewise for span BC B ——a—(2M +My)= Pa® (3521
P ’ 3T 6E 3T Y T o4 ~
By = -2 (2M YR (3.5.22)
AT Rl YT T T 96El ~

Calculation of rotation requires the deformation displacement relation, which, in turn, requires all three equilib-
rium equations, which can be rewritten (see eq. (3.5.1)) as

10 0 0 (M, 0
0 1 -1 0 My =40 (3.5.23)
1/a =1/a -1/a 1/a||M;3 -P
My
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Rotation 6, rotation 6,, and displacement v represent the dual variables of the EE (1, 2, 3, respectively) in equation
(3.5.23). The deformation displacement relations ({ B} = [BI7{X}) can be written as

By =—0; +—
a
B> =6~
a
14
B3 =—0,——
a
By=" (3.5.24)
a

Note that the deformation [3, calculated earlier is different from the deformation designated B> because the
condition of symmetry is not used here.

Pa?
0, =B4-B; = %E
Pa2
8, =—(B3 +B4)= B (3.5.25)

Load case 2: Solution for thermal loads.—We obtain the solution for a thermal load by modifying the IFM
equations that have been developed for mechanical loads. The modification pertains to the term {S8R} in the right
side of the compatibility condition. To calculate {3R}, we decompose the total deformations into elastic and thermal
components.

By =PBS +B5
Bs=B%+B% (3.5.26)

Since B5 and B4 have already been calculated for mechanical load case 1, only the thermal deformations
(B’z and B g) need to be determined. These are calculated from equation (2.40) as

2a p
Béz_j Ta_mdx

0 E 8M2
2a
My o
By =—| “L2% 4 (3.5.27)
0 EI 8M4
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The thermal moment is calculated as
d/2

My = j

T -dr2

Eob 2 AT yd
= j—d/2 yay

EoAT by dy

d/r2
T,+T, T,-T
=E(be (J_uu__ly)ydy
_anl 2 d
Eobd?
= 12 (TM-TZ)
a a =
B, __Mp J awz(x)dx o%(x) e
- El |Jo oM, o oM,
M a @ X
2_(_Tj{ LY J (1-5)@?} (3.5.28)
El oa 0 a
t aMy
or o 3.5.29
B> I ( )
y A
=T “X iz
El J0 a
t aMy
o —_ 3.5.29b
T Y ( )
aMT
" EI 2Mra
SR =-1C1ip"t=-1 2 = 3.5.
pr=—afp}=dt 2y =g ¢339
2E]

The IFM equations are obtained by adding {SR} into the mechanical load equations and equating mechanical

load P =0 as
2 1 7(M; 0
a a
= (3531)
Sa - 24 Mya
6EI 6EI || M4 El
57
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Solution of the IFM equation yields

M
M2 = —T
4
3M
M, ==L (3532)
2
The moments (M 1» M) are obtained as
Ml = 0
3M
My=M,= -4—T (3.5.33)

Reactions can be back-calculated from moments as follows:

M, 3M
Ry=—2=""TL

a 4a

My-M 3M
Ro=—2——t -1 (3534)

a da

For thermal loads, the reactions are self-equilibrating (R, + R~ = 0) as expected.
Calculation of displacements.-—Displacements can be calculated from the deformation displacement relations by
including thermal load contributions. Displacement v at B is given by

2 2
T a aM
V=aB4=a(ﬁi+ﬁ4)=6—E7(2M4+M2)— 2E1T
2
M
or =4r (3.535)
8EI

For positive M, or for T, > T, , the displacement v at B is along the positive y-direction.

Load case 3: Support settling.—Support settling has to be included in the right side of the compatibility condi-
tion {8R}. Since support A settles by A inches in the negative direction of the reaction R, (see fig. 3.5(a)), the EE has
to be written in that direction as

or {Ry={B,} {F}= [13“]T{Zj} (3.5.36)
{B}° =a{B,}= A[lga} = {AO/ a} (3.5.372)
{8} =-{C]{B}° =1 2]{% a} = —% (3.5.37b)
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The factor (6El/a) earlier set to unity for mechanical loads has to be retained in {OR} because CCis a
nonhomogeneous equation.

6EIA} (3.5.38)

o= {3

The IFM equation, which includes the effect of support settling, but not mechanical or thermal loads, becomes

2/a 1/al[M, 0
=1 6EIA (3.5.39)
6 5 M4 - a2
or _ 3EIA
5 =—
8a’
3EIA
M4 =- P
4q
3EIA
My =My =-
8a>
and M;=0 (3.5.40)
Reactions can be back-calculated from moments as follows:
M,  3EIA
RA = = — 3
a 8a
M,-M 3EIA
Rp=—"2—"%- (35.41)

a 8a>

In the absence of mechanical load, the reactions are self-equilibrating (R4 + R-=0).

We can calculate the transverse displacement v at location B by using the DDR, [, or B,. Here, the displacement
is calculated from both B, and B, to illustrate the participation of initial deformations {B}°. From the transverse EE,
which is the first equation in equation (3.5.39), the DDR can be written as

0 2v
By =p3+Br=—-—
a
a
or y=-2P2
2
Likewise, B, =PB% +B3 =2
a
or v=aPys
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Elastic deformations are

Initial deformations are

Total deformations are

8 8 a
5A
__3A 3.5.42
B4 6 ( )
By 5
2 16
5
also, v=af4 =——I—EA (3.5.43)

The same displacement value (v = ~5A/16) is obtained from deformation B,, which has an initial component, and
deformation f3,, which has no initial component.

Illustrative Example 6: Fixed Beam Under a Uniform Load

A uniform beam of length ¢is fixed at both ends as shown in figure 3.6(a). It is made of steel with a Young’s
modulus E and a moment of inertia I. The beam is subjected to a uniformly distributed load of intensity g per unit
length. Solve the beam for forces and displacements at its center span.

Step 0—Solution strategy: The free-body diagram of the beam is shown in figure 3.6(b). Because of symmetry,
the moment M and shear force V are equal at ends A and B. Furthermore, the value of shear force can be determined
from the transverse equilibrium equation as

2V=gf or V=— 36.1)

The moment EE is automatically satisfied as follows:

2
M=M+V —q—i— (3.6.2)
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T g per unit length

¢=2a |
(a) Beam fixed at both ends.

A@Htwwgs

(b) Free-body diagram.
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(c) Free-body diagram for half of the beam.

Ve

Figure 3.6.—Fixed beam under uniform load.

The fixed beam provides no free displacement at either support A or B. For the solution of the problem, any point
in the span of the beam with two unknowns (a moment and a shear force) can be selected. The center span point C is
selected because displacement is required at this point.

A coordinate system (x, y) with its origin at A is selected. The problem has three unknowns (or n = 3), consisting
of a fixed-end moment M, and M~ and V-~ at C (as shown in fig. 3.6(c)). The problem has two displacements—the
transverse displacement v and the rotation 0 at C (or m = 2). The problem is one-degree indeterminate (r =n-m= 1.

Step 1—Formulate the equilibrium equations: Two EE can be written at point C:

Transverse EE, V+Ve = q?ﬂ (or Ve=0 since V= q?é) (3.6.3a)
2 2
Moment EE, Mc-M~ -6—12— + % =0 (3.6.3b)

Since V. is a known quantity, the moment EE represents the only independent equation, which in matrix notation can
be written as

M 2
L = {— %} (3.6.4)
Mc

The problem is one-degree indeterminate because the single EE is expressed in terms of two moments
(M, M ). Solution of the problem requires one CC.
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Step 2—Derive the deformation displacement relations: The DDR for the problem have the following form:
Py =6

B, =6 (3.6.5)

where the deformations (Bl, B,) correspond to the moments (M, M -), respectively. Rotation 8 at C is the dual vari-

able of the EE.
Step 3—Generate the comparibility condition: The single compatibility condition is obtained by eliminating the

rotation 0 between the two DDR:

B1+B2 =0 (3.6.6)
In matrix notation, the CC can be written as
1 1]{[31 } ={o} (3.6.7)
B>

The null property (IBIC]T = [0]) of the EE and CC matrices can be verified as

1
-1 (=[0] (3.6.8)
1

Step 4—Formulate the force deformation relations: The FDR for the problem can be obtained from energy con-
siderations (see fig. 3.6(c)) as
l £/2
B =L 7/18—%-(&:i %%dx (3.6.9)
ElJy oM El Jg oM
Because of symmetry, only half the span is integrated when deformation {3, is being calculated; then this value is
doubled to obtain 3, where

2
%(x)=M+q7€x——qu . (3.6.10a)

OM(x)

=1 6.1
o7 (3.6.10b)
oM(x)

=0 3.6.10
M, ( )

The deformation that corresponds to the moment M- is B, = 0 since 0%4x)/ dM - = 0. The deformation B, that
corresponds to the moment M can be calculated as

2 3 glx qx2
P El -([( 2 2 J() * ( )
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2 (Mo gt®
S . L 36.12
or Py EI(Z 24J (36.12)

Step 5—Express the compatibility conditions in terms of forces: The CC can be written in terms of moments as

M 3
[ﬁ '0} - {_ _‘1.[_} (3.6.13)
2 2
MC

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The IFM equation is

1 1)rpy |22
-, 8 (3.6.14)
£ 0 —q/ 3
2 el 5
Solution of the IFM equation yields
£2 ez .
m=-2_ M= v=1¢ (3.6.15)
12 24 2

Step 7—Back-calculate the displacements, if required, from the forces: The displacement function w(x) is obtained
by integrating the moment curvature relations:

d’w _m
W #X) (3.6.16)
dx2 EI
2 2 2
where SOV VO Lo S S LU, LB, L (3.617)
2 2 12 2 2
Integration of the moment curvature relations yields
2.2 3 4
wiy= L 9T AT # e, (36.18)
EI 24 12 24

The displacement boundary conditions, w = 0 at x = 0 and x =¢, can be used to obtain the integration constraints
as ¢; = ¢, = 0. The displacement function w(x) can be written as

2.2 3 4

‘

W)= | Z XD 9 ax (36.19)
EI| 24 12 24

The displacement at the center span is obtained for (x = ¢/2) as

4
q/
__at 3620
Ry (36.20)

The displacement at C is along the negative y-direction, which is also the direction of load g.
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Illustrative Example 7: Clamped Beam for a Mechanical Load, a Thermal Load,
and Support Settling

A uniform beam of depth d, thickness b, and moment of inertia / is made of steel with a Young’s modulus of E
and a coefficient of expansion of o per °F. It is clamped at both ends (A and B) as shown in figure 3.7(a). The beam
is subjected to a concentrated load of magnitude P. Analyze the beam for the following load cases:

Load case 1: Transverse load P at the center span

Load case 2: Uniform temperature along the length of the beam (Along the depth, the temperature variation is
linear with values AT and ~ AT at the upper and lower surfaces, respectively, as shown in figure 3.7(b).)

Load case 3: Settling of supports A and B by A, and Ay inches, respectively

Load case 1: Solution for a mechanical load.—

Step O—Solurion strategy: The coordinate system (x, y) with its origin at A is shown in figure 3.7(a). The beam is
divided into two elements (1, 2); and three nodes (A, B, C). Four moments (M, M,, M3, M,), as shown in figure
3.7(c), are considered as the force unknowns of the problem, or n = 4. The problem has two free displacements at
location C, consisting of the transverse displacement v and the rotation 6, or m = 2. The problem is two-degrees
indeterminate (r=n-m =2).

P
A *C

=

€=2a
|
(a) Clamped beam under concentrated load.

y AT (°F)

}
|
|
d| L=z

|l«—b—| AT(P)

(b) Temperature distribution shown on enlarged cross section.

TV
My i 0 M3
( 0, [ c )(* @ 3 I
_1 T omem Moy Mg M4
R, a a a a Rg

(c) Free-body diagram.
Figure 3.7.—Clamped beam under a concentrated load and settling support.
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Step 1—Formulate the equilibrium equations: Two equilibrium equations can be written at C, consisting of one
transverse EE and one rotational EE. The transverse EE at C along the displacement v direction (see fig. 3.7(c)) can
be written as

+ P) =0 3.71.1)
a a

The rotational EE at C along the 8 displacement direction can be written as

-M,+M3 =0 3.7.2)
The two EE in matrix notation can be written as
M,
V/a -1/a -1/a 1/a||M> -P
= (3.7.3)
0 | -1 0 {{M; 0
My

Two EE are expressed in terms of four unknown moments (M, M,, M3, M), or the problem is two-degrees indeter-
minate. Two CC are required for its solution.
Step 2—Derive the deformation displacement relations: The DDR B} = [B1T{X}) are obtained as

v
By =—
a
By=-—+6
a
v
By=-=-8
a
By=— (3.7.4)
a

The deformations (B, B,, Bs, B4) correspond to the moments (M}, M,, M3, M), respectively. Displacements v
and 8 are the dual variables of the transverse and rotational EE, respectively.

Step 3—Generdte the compatibility conditions: The two CC for the problem are obtained by eliminating the two
displacements from the four DDR as

By -Bs=0

By +By+P3+Ps=0 (37.5)

In matrix notation, the CC can be written as
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B1

1 0 0 -1)[By| [0

RE
Ba

The null property (IB1IC)T =[0]) of the EE and CC matrices can be verified as

11
1/a -1/a =1/a 1/4]| 0 1| [0 0 377
0 1 -1 ollo 1/ |00 3.7.7
-1 1

Step 4—Formulate the force deformation relations: The FDR for a beam element (derived earlier, see eq. (2.48c¢))
are used here. For beam element AC, the FDR are

a

=2 oM +M
By 6EI( 1+ M)
a
=—(2M-, + M 3.78
B2 6EI( 2+ M) (3.78)

Likewise, the FDR for beam element CB are

a
=—(2M;+ M
B3 6EI( 3+My)

Bg= é(zm +M3) (379)

Step 5S—Express the compatibility conditions in terms of forces: Elimination of deformations {3} between the CC
and FDR yields the CC in moments:

M,
a2 1 -1 =21|M,| [0
— = 71
6E1[3 3 3 3] M, {0} (3.710)
My

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The IFM equations are as follows:

1/a -1/a -1/a 1/a |{M -P
0 1 -1 0 ||M, 0
) . O (M, =10 (3.7.11)
3 3 3 3 || My 0

Solution of the IFM equation yields the moments as
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8 8
(3.7.12)
Pt Py
My=-~ My=——7-
27 4778
Reactions R, and Ry can be back-calculated as (see fig. 3.7(c)).
M, ~-M
R, =2z _P
a 2
M,—M
Rp =_3__4=£ (3.7.13)
a 2

Step 7—Back-calculate the displacements, if required, from the forces: The displacements can be calculated from
the deformation displacement relations. The displacement at C under load P is

a’ po3
v=ap, =E(2M1 +M2)=—1—9-ﬁ7 (3.7.14)
The displacement v is along the negative y-direction, which is also the direction of load P. The slope at Cis
0=P, +By = (2M; + My )+ ——(2My + My ) = = (M; + M;) = 0 (3.7.15)
6EI 6EI 2EI

Slope 8 at the center span of the beam is zero because of symmetry.
Load case 2: Uniform temperature.—For thermal analysis, the right side of the compatibility conditions, {OR},
which is a nontrivial vector, is calculated as follows:

@Ry =-C)B}° (3.716)
Bl
t
where - =P 2t (3.7.17a)
B3
B4
“My (3
Bl = —J E—IT[ng—}dx (j=1273and4) (3.7.17b)
j
The thermal moment M is
d/2
My = J’_M Eo. T(y)ybdy (3.7.18)
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3
2
since T(y) = 28y My = EoAT g2 = 2E (%}mr

d 6 dl 12
or My =-2—£I(—X—A£ 3.7.19)
d
For span AC, the moment function Z(x), see figure 3.7(c), can be written as
My—-M
M(x)=M; +—2——Lx
am. ( (X )
dMl a
e _x (3.7.20)
sz a
Upon integration, the thermal deformations are obtained as
a
M
Bi =—M—Tj(l—£jdx=—a T =_(xATa
EI a 2EI d
[
a
M M AT,
ﬁf?:‘—Tﬂijdx:”—a T __0ATa (3.7.21)
EI a 2EI d
o
The span CB has no contribution to the thermal deformations B and ﬁ’zbecause
oM O _
oM; oM,
Likewise, the thermal deformations Bgand B/ can be calculated as
P aMy aATa
B3 me———— -
2EI d
! aM oATa
=— =— 3.7.22
B4 2El y ( )
The effective initial deformation vector {SR} becomes
1
1 0 0 -1 oATa\|1| 40ATa (O
{6R} =~ (— a) SRl (3.7.23)
1 11 1 d 1 d 1

1
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The IFM governing equation for thermal load can be written as

M 1

M, | 2EI0AT |1

M; B d i

M, 1
and displacements can be calculated as follows:

v=ap,
oATa
=BE +B] = —— (2M, + M, ) - =
B =Bi +B 6E1( 1+ M) 4

Likewise, B2 =0
thus, v=0
and 0=p;+B, =0

[1/a ~1/a -1/a 1/a) [M; 0
0 1 -1 0]|M 0
2 1 -1 2 |My i 0
13 3 3 3] |M, LE?AZ

(3.7.24)

(3.7.25)

(3.7.26a)

(3.7.26b)

The temperature distribution, which varies along the depth of the beam but is constant across its length, does not
induce displacements in the fixed beam. In other words, because the elastic and thermal deformations are equal and

opposite, they cancel each other. The beam is stressed because of nontrivial elastic deformations.

Load case 3: Support settling.—Support settling is also accounted for in {OR}, which is the right side of the CC.

As before, this vector is calculated as
{8R) = —-{C1{B}°
{B}O =-B,] {X_}

-4}

(3.7.27)

Here, A, and Ay are the settling of supports A and B along the negative y-direction, respectively, as shown in figure
3.7(a). The reactions R, and Ry corresponding to the amounts of settling can be expressed in terms of moments (see

fig. 3.7(c)) as

1
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Va | |M, 0 M,
Ry = and Rp = (3.7.28)
0 M; 1a | |M;
0 M, ~1/a | |M,
~1/a 0 ~A4
A A
8}’ =B, }x}= 1;a I?a {AZ}: (é) Az (3.7.29)
0 -1/a ~Ap
A,
{5R}=~{CHB}O=-{1 0o —1}(1J ha (3.7.30)
111 1 |\a)| ap
“Ag
As-Ap
or {SR} = “
0

The IFM equation for support settling can be written as

1/a -1/a -1/a 1/a| | M 0
0 1 -1 0 M EI 0
2| _SE (3.731)
2 1 -1 -2 M al 1Ay —Ap
3 3 3 3 My 0
Solution of the IFM equation yields the moments
M, Ay—Ap
M, | _6EI 0
=— 3.7.32
My| o2 0 6732
M, Ap—Ay

. For an equal amount of settlement (A, = Ag), M; = M, = M5 =M, =0, and the structure is stress-free. Reactions can
be back-calculated from the moments as

_My-My _12EI(Ag—A,)

R
A a f3

12EI{(Ap—Ay)

23 (3.7.33)

B:

The reactions are self-equilibrating (R, + Ry = 0) when supports settle and there is no other load.
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Calculation of displacements.—Displacements can be calculated from the deformation displacement relations.
The midspan displacement v can be written as

v=ay == (Bf +f)

e a AA_AB
=—02M{+ My )= —""——
! 6EI( ! 2) {

Ay +A
y= —(—A—;—B) (3.734)

The displacement v is along the negative y-direction (or along load P).
The midspan rotation 6 can be written as

0=p;+P
B1=Bf+[3?=_(_A_/1;LB)
B, =B% +B5
B =L (ay-hp) and  BY-TA
) ezs_(—A_Az—;A‘Bl (3.1.35)

For symmetrical settling of supports (A, = Ap), rotation, or slope, 8 = 0.

Tlustrative Example 8: Torsion of a Shaft Fixed at Both Ends

A circular shaft fixed at both ends and made of two materials with shear moduli G; and G, and polar moments of
inertia J; and J,, is shown in figure 3.8(a). The shaft, which has a total length of ¢, is subjected to a torque T at a
distance a from its left support. Analyze the shaft for torque and angle of twist.

Step 0—Solution strategy: Figure 3.8(a) shows the coordinate system (x, y) with its origin at A. The fixed-end
reactive torques (T, T) are considered as the unknowns, or n = 2. Only one EE, or m = 1, representing torque bal-
ance along the x-axis, can be written. A dual variable, or angle of twist @, is associated with the EE. The problem is
one-degree indeterminate (r=n—-m = 1).
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Figure 3.8.—Torsion of a circular shaft fixed at both ends.

Step 1—Formulate the equilibrium equations: Torque balance yields a single EE for the problem:

Ty +Tc—-T=0 (381
In matrix notation, the EE can be written as
Ty
[_1 - 1] = {_T} (3.8.2)
Tc

The problem is one-degree indeterminate because two unknown torques are expressed by one EE.
Step 2—Derive the deformation displacement relations: The DDR ({B} = [B]T{X}) are obtained from the EE as

Bi=-¢
Br=-0 (3.8.3)

where ¢ is the dual variable of the EE and the deformations (§,, B,) correspond to the torques (7, T,), respectively.
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Step 3—Generate the compatibility conditions: The single CC for the problem is obtained by eliminating ¢ from

the two DDR:

Bi—B2=0

: o af)ew

The correctness of the EE and CC matrices can be verified from their null property (BIC =[0]) as

S MRS

Step 4—Formulate the force deformation relations: The FDR for the problem can be determined from the follow-

ing integral derived earlier in equation (2.45a):

1 (f1or
B=— | = dx
JG JoJG T
For span AB (J = J| and G = G)), the torque is
T =-T4 and £=— ﬂ:o
dTy, dT¢
For span BC (J = J, and G = G,), the torque is
T=-T4+T and ar __ 4T _,
dTy dT¢
B _;J"_T (-1)dx+ ! _[[ (T4 +T)(-1)dx
V776,40 74 JyGoy da VA
T T, -T){-a)
or Bl = Al +( A )(
J1Gy J2Gy
B> =0  because i11‘=0
dTc

(3.8.4)

(3.8.5)

(3.8.6)

3.8.7)

(3.8.8)

(3.8.9a)

(3.8.9b)

Step 5—Express the compatibility conditions in terms of forces: The CC written in terms of torque has the follow-

ing form:

T,

a {—a
+ 0
|:JIG1 J2Gy ]

Te
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Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve for
the forces: The IFM equation can be written as
-1 ~1 T, -T
a N {—a 0 = T(ﬂ—a) (3811)
11Gy 1,6, Tel 710,
Solution of the IFM equation yields
{-a 1
J>G, a_, l—a
Ty J1Gy 126y
=T (3.8.12)
- f£—a 1
J>G, a_, L-a
J1G1 126,
For¢=2a,J, =J,=J,and G, = G, = G, the torques T, and T simplify to
Tal g2 (3.813)
o[ " |1/2 o
The total deformation ¢ is obtained by substituting T = 2Tc and (T, =T() in equation (3.8.9a) as
Tqa T
p=-P =——2—-—E (1-q) (3.8.14)
N1Gy 126Gy

For a uniform shaft, J, =J, = J, G| = G, = G, and external torque T applied at the center of the shaft, the deforma-
tion becomes

Ta T
__Ta  Ta _ (3.8.15)
2JG 2JG
The twist angle ¢ is 0 because of symmetry. The twist angles for the individual shafts (AB and BC) are
TA(,I
Qap= 7,G,
Tc(t-a)
=—F 3.8.16
®BC 1,6 ( )

Next consider a shaft made of two different materials. Shaft AB is a 4-in.-diameter solid shaft (fig. 3.8(c)) made
of annealed bronze. It has a shear modulus G, of 6500 ksi and a length a of 6.5 ft. Shaft BC is a hollow, tubular shaft
with an outside diameter of 4 in. and an inside diameter of 2 in. (fig. 3.8(d)). It is made of aluminum with a shear
modulus of 4000 ksi and a length b of ¢— a = 5 ft. The applied torque T = 20 000 in.-Ib. Numerical values for the
composite shaft are
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4
Jy ==t in.4 1,Gy =521x10* kips—in.2  a=78in.

Iy =3 - rg)=75min® J,Gp =3nx10* kips—in.? £-a=60in.  (=138in.  (3817)

For these values,

Ty 114286} 5.
= 10" in.~Ib (3.8.18)
Tc 85714
Twist angle for the first shaft, ®4p = —54.56X 10~ rad
Twist angle for the second shaft, ¢ pc =54.56 % 10~ rad
Total twist angle, O=Pp+0pc =0

Tllustrative Example 9: Beam Supported by a Tie Rod

A steel beam of length L, modulus of elasticity E,, and moment of inertia [, is fixed at C and supported by a tie
rod at B. It is subjected to a uniformly distributed load of intensity g per unit length. The tie rod, which is made of
aluminum, has a cross-sectional area of A, a modulus of elasticity of E,, and length ¢. Determine the force in the tie
rod, the reactions at C, and the displacement at B.

Step O—Solution strategy: A coordinate system (x, y) with its origin at B is shown in figure 3.9(a). Tensile bar
forces are assumed to be positive. A reaction (Rp) at B and two reactions (R, M) at C are considered as the three
force unknowns of the problem, or # = 3. From the free-body diagram of the problem shown in figure 3.9.(b), the
internal force F in the tie rod is equal to the reaction at B (or F = Rp). Two equilibrium equations—one along the
transverse y-direction with v as the dual displacement variable and the other along the rotation 0 or the z-direction—
can be written, or m = 2. The problem is one-degree indeterminate (r=n-m=1).

Step ]—Formulate the equilibrium equations: The transverse and rotational EE of the problem are as follows:

Transverse EE: Rp+R¢c—-gL=0 (3.9.12)

2
L
Rotational EE at B: Mc+RcL- 5—2— =0 (39.1b)

In matrix notation, the EE can be written as

Rp
-1 -1 0 —qL

Rep=1 g2 (39.2)
0 -L -1 5

Mc

Since three force unknowns (Rg, R, M) are expressed in terms of two EE, one CC is required for the determination
of the unknown reactions.
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(b) Free-body diagram.
Figure 3.9.- Beam supported by a tie rod.

Step 2—Derive the deformation displacement relations: The DDR ({B} = [BIT{X}) for the problem are as follows:

By =—6 (3.9.3)

Deformations (Bl, Bz, B3) correspond to the forces (Rg, R, M), respectively. Displacement v and rotation  are the
dual variables of the transverse and rotational EE, respectively.
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Step 3—Generate the compatibility condition: The single CC is obtained by eliminating v and 8 from the three
DDR as follows:

Bi-Br+LB3;=0 (39.4)
In matrix notation, the CC can be written as
By .
[1 -1 L] Byt ={0} (3.9.5)
B3
The null property ({B]J[C)T = [0]) of the equilibrium and compatibility matrices can be verified as
1 .
-1 -1 0O Lle 0 (396)
0 -L -1 o -
L

Step 4—Formulate the force deformation relation: The deformation in the CC represents the total deformation,
which is composed of two components: beam deformations {[3}beam and tie-rod deformations {[}4¢ rod g

{B} — {B}beam +{B}tie rod (3.9.7)

Calculation of the beam deformation contributions.—The beam deformation component B{)e AT due to the
reaction Ry is obtained as the partial derivative of the strain energy U? stored in the beam with respect to Rp:

beam _OUY 1 (L om
beam _ OV

= m dx 398
ok, B "V or, (398)

gx*

where 7(x)=Rp x——2~
) _ (39.9)

aRg
R L3 4
or ppeam 1 | KB &7 gL (3.9.10)
Eyl,| 3 8

Deformation components (B beam _ gbeam _ 0) are zero because 0%/0R - = 9%/0M = 0.

Calculation of the tie-rod deformation contributions.—The deformation component B{le rod i calculated as
the partial derivative of the strain energy stored in the tie rod with respect to the internal force (F = Rp) as shown in
figure 3.9(b).

tie rod - U — 1 J‘[F oF dx
! oRg AE, 0 ORp
: Rp!
since F=Rg fierod _ "B (3.9.11)
AE,
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Deformations (B‘zje“’d = Bg“(’d =

Total deformations are

B =P3=0 (3.9.12)

Step 5—FExpress the compatibility conditions in terms of forces: The CC in forces has the following form:

R
3 B 4
L
L L 0 ollr.l=t (3.9.13)
3E,1, AE, 8E, 1,

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve
for forces: The IFM equation for the problem has the following form:

-1 -1 0 —gL
R
B g Lz
0 -L -1 Re = _T 3.9.14)
M
3 c 4
|3Epl,  AE, | 8E, 1,

The solution of the IFM equation yields the forces as

gLt
Rp = 5 - (39.152)
8E, 1, +
3E,I, A,
L4
Re=gq L- E ; (3.9.15b)
8E, I, +
3E, 1, AE,
L? L
Me=-2124 q3 (3.9.15¢)
L ¢
8E, I,| ——+
3E,I, AE,

The forces are calculated for the following numerical values: E, = 200 Gpa, E, = 70 Gpa, L = 3x10° mm,
£=17.5x103mm, g = 12 kKN/m, I, = 20x10® mm*, 4, = 100 mm?.

NASA/TP—2004-207430 78



Rp=9.145kN
R=26.855kN
M, =-26.565 kN-m

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations: The trans-
verse displacement (v) at hinge point B can be calculated as

Rgl® qI*)| Rpt
yopy =t (B _4f ]_ 2 (3.9.16)

Eply | 3 8 | 4,E,

The first term in equation (3.9.16) represents the contribution from the beam, whereas the second term represents the
contribution from the tie rod.
The axial displacement vt °d for the tie rod can be determined from its deformation

Btie rod _ RBZ
! AE

- Ryt
or ytierod . _ _ZB% (3.9.17)
AtEt

Substitution of the numerical values yields the displacement v!i€°d = _9.798 mm, which represents the stretching of
the tie rod.
The transverse displacement for the beam can be calculated from its deformation

3
Bbeam 1 RpL _ qL4
Eply 3 4

or poeam __ 1| Rpl” gl (3.9.18)
Eyl,\ 3 4

For the numerical values of the problem, the transverse beam displacement along the negative y-direction becomes

yPMm _ 9798 mm (3.9.19)

The beam and tie rod deform in a consistent manner (i€ 10d + ybeam = 0)_as expected.

Illustrative Example 10: Three-Bar Truss for Mechanical and Thermal Loads

A three-bar truss made of steel has a Young’s modulus E of 30 000 ksi and a coefficient of thermal expansion o
of 6.6x1070 per °F (fig. 3.10). The areas of its three bars (4, 4,, 43) are 1.0, 1.0, and 2.0 in. 2 respectively. Analyze
the truss for the following two load conditions:

Load case 1: Mechanical loads (P, = 50 kips and P = 100 kips) shown in ﬁgure 3.10
Load case 2: Two cases of temperature variations

AT, 100.0] AT 100.0) F
ATyt ={2000 and AT =1-2000 (3.10.1)
ATy) ., (3000 ATy o, (3000
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Here AT, represents variation in temperature for bar i.

Step 0—Solution strategy: A coordinate system (x, y) with its origin at node 1 is shown in figure 3.10(a). The
bar forces (F 1’ F,, F. 3) are the three force unknowns, or n = 3. Only two equilibrium equations can be written along
the two displacement directions (X, X,) at node 1, or m = 2. The truss is one-degree indeterminate (r =n-m = 1).

Load case 1: Solution for mechanical loads.—

Step I—Formulate the equilibrium equations: The two EE ([B]{F}) = {P}) of the problem are obtained from
the force balance condition at the free node 1 along displacements X; and X,, as shown in figure 3.10(b).

F
vz o 120 (P {50}
. Blalx i 3102
E -l _1/\/5} > {Py} 100 G102
3

The truss is one-degree indeterminate because the two EE have three force unknowns. One CC is required for the
analysis of the three-bar truss.

Step 2—Derive the deformation displacement relations: The DDR ({B} = (BIT{x D) of the truss has the
following form:

5 XX
SN RN
B2 =-X,
X X
=————= 3.10.3

i 100 in. ' 100 in.—»‘

e Py
(b) Free-body diagram at node 1.

Figure 3.10.- Analysis of a three-bar truss.
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Here, B, B, and B are the bar deformations corresponding to forces F, F5, and F respectively. The nodal dis-

placements (X,, X,) are also the dual variables of the EE.
Step 3—Generate the compatibility condition: The single CC for the problem is obtained by eliminating two

displacements from the three DDR:

B1—v2By +B3 =0 (310.4)
The CC can be written in matrix notation as
B1
[ V2 1ipy=0 (310.5)
B3
The null property (IBI[C]T = [0]) of the EE and CC matrices can be verified as
12 0 -1/42 ; 0
- -2 = [ (310.6)
/2 -1 -1/42 ) 0

Step 4—Formulate the force deformation relations: The FDR for the bars of the truss can be obtained as
(B = ¢F/AE). The lengths of the three bars are 10042 , 100, and 10042 in., and their areas are 1.0, 1.0, and 2.0 in2,
respectively.

0F (10042
Bi :—_A E = E £
11
100
=—F
B2 7 B2
V2

Step 5—Express the compatibility conditions in terms of forces: The CC are obtained in terms of forces by
eliminating deformations between the CC and FDR:

£
10?13‘/5[1 -1 1/2KF ={0} (310.38)
F

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve
for forces:

1/42 0 -1/42 |(R 50
~1/42 -1 ~1/42 Bt =14100 (310.9)
1 -1 172 || F 0
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Solution of the IFM equation yields the forces as

R 5.025
Fy b =—142.893 (310.10)
F 75736 ips

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations:

100F
X, =B, =——2=0143 in.
100 .
X; =v2B, -B, =?(2F1 - F,)=0110in. (3.10.11)

Load case 2: Solution for thermal loads.—Thermal analysis requires the inclusion of nontrivial {8R} in the
right side of the CC:

{oR} = -{c}{p}° (310.12)
BY|  [an
where B}° ={BY t = {ATy¢,
i A543
ATyt
{8R} =1 V2 1]o{ATy0,
ATy ¢4
or {8R} = —100v20 (AT} — AT, +AT;)
{8R} ooy =—0187 (3.10.13a)

Likewise, the {8R} calculated for the temperature increase for case 2 becomes
{8R} en =0 (3.10.13b)

The nontrivial thermal distribution for case 2 represents a compatible temperature distribution that does not induce
any stress. For thermal distribution case 1, the IFM equation can be rewritten to include the {8R} term as follows:
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(142 0 -1/¥2 |(R 0

“1/J2 -1 =1/J2 §Bt={ 0 (310.14)

|1 -1 12 B (396

The compatibility condition in equation (3.10.14) has been scaled with respect to 1002 / E, see equation (3.10.8).
Solution of the IFM equation yields forces as

F] (-1359
Fb={ 1922 (310.15)
B (-1359) 4

Calculation of displacement.—Displacement can be calculated from the DDR as

X, =2 B B>
By=Bf+B and By =Pp5+B5
upon substitution, X, =-01551n. (3.10.16)

Xp =By =—(B% +B%) =019 in. (31017)

The compatible temperature distribution thermal load case 2, produces trivial forces (F = F, = F; = 0) but nonzero
displacements, which are also calculated from the DDR:

0.0933

B} ={B}° +{B} ={B} =4-0.1320 (3.10.18)
~0.2800

X, =2 B} - 5 = 0264 in.

X, =B5 =0132in. (310.19)

Illustrative Example 11: Six-Bar Truss for Mechanical and Thermal Loads

The six-bar truss shown in figure 3.11 is made of aluminum with a Young’s modulus E of 10x103 ksi and a
coefficient of thermal expansion o of 6.0x1076 per °F. The cross-sectional areas of members 1, 3, 5, and 6 are 1 in.2,
and those of members 2 and 4 are 1/ /2 in.2 Analyze the truss for forces and displacements for the following two
load cases:
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' 20in. }

Figure 3.11.- Six-bar truss.

Load case 1: Mechanical load P = 1 kip at node 1 along the y-direction .
Load case 2: Temperature increase AT = 100 °F (for member 3 only)

Step 0—Solution strategy: The coordinate system (x, y) with its origin at node 4 is shown in figure 3.11. The six
forces in the six bars are the force unknowns, or n = 6. Tensile bar forces are assumed positive. Nodes 2 and 3, which
are free, with displacements X, X,, X5, and X, as shown in figure 3.11, yield four EE, or m = 4. The truss is two-
degrees indeterminate (r = n — m = 2). From observation, we can conclude that the force in the sixth bar Fg =0,
which, a priori, will not be assumed.

Load case 1: Solution for mechanical loads.—

Step 1—Formulate the equilibrium equations: Forces in the six truss members (1, 2, . . ., 6) are designated
F|, F,, ..., F¢ Four EE at nodes 1 and 2 can be written along the displacement directions (X}, X,, X3, X,). In
matrix notation, the EE becomes

A
1 1/42 0 0 0 0||B 0
F 1000
0 1/42 1 0 0 0f|F]_ G110
0 0 0 /42 1 0||F 0
0 0 -1 -1/42 0 0||Fs 0
Fs

The sixth column, which is null, in the EE matrix corresponds to the fully restrained force in the sixth bar. Since the
four EE are expressed in terms of six forces; two CC are required for the solution.
Step 2—Derive the deformation displacement relations: The six DDR ({B} = [BIT{X}) have the following form:

X, -X
B1=X B4=—( 3\@ )
X;+X
Bz='('1—j—2—2) Bs=X;3
By =Xy —X, Bg =0 (112)
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Step 3—Generate the compatibility conditions: The two CC, which are obtained by eliminating the four dis-
placements from the six DDR, can be written in matrix notation as

B
B2
0 0 0 0 0 11iBs (3.113)
1 =2 1 =2 1 0]|B, o
Bs
Bs
The first CC specifies that B, = 0 is zero because member 6 is restrained at both ends and cannot deform.
The null property (BICIE = [0]) can be verified from the one EE and the CC matrices as
0 |
1 1/42 0 0 0 ol]lo V2] oo
0|0 1 00
0 /42 1 0 0 _ 3114)
0 0 0 1/V2 1 0|0 V2| |00
0 0 -1 -1/4J2 0 of[0 1 00
_1 0 -
Step 4—Formulate the force deformation relations: The FDR = F¢/AE for the six truss members are as
follows:
HF 20RH 40F,
p=—tl-=1 By=—*
AE, E E
40F, 20F5
B2 = z Bs= £
20F; 20F;
== = — 3115
B3 5 Bs z ( )

Step 5—Express the compatibility conditions in terms of forces: The CC is expressed in forces by eliminating
deformations between the CC and FDR to obtain

200 0 0 0 0 1]|FR| [0 L6
El1 =242 1 242 1 0| |F[ |0 (3116
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Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve

for forces:

1 1/y2 0 o o0 o|A 0
0 1/42 1 0 0 0||F| [1000
0 0 0 1/4V2 1 0||F 0
0 0 -1 -1/42 0 o||F i 0
0 0 0 0 0 1||Fs 0
1 22 1 =22 1 0f(F) (0

Solution of the IFM equation yields the forces:

F) [-5455
28 7714
R 4545
F [~ ]-6428
Fs 4545

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations:

20F,
X; =B, = ==L =-1090x10%in,
E

X, =B, +42B, =—2—EO(FI ~242F,)=5454x10in.

20F.
X5 =B = —Ei =0.909x103in.

X4 =~(B1 ~v2B» +[33)=—2—£(F1 ~2J2F, + F3)=4545x10%in.
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Load case 2: Solution for thermal loads.—Only the right side of the CC, {R}, has to be modified for thermal

analysis:

foR) =1 -

for) -

{82} =-[clp}°

For thermal loads only, the IFM equations can be written as

(1 1/42
0 1/42
0 0
0 0
0 0
1 242

0

1

0

1

0 )
0
0_ (XZAT
m° =",
0
L 0 ]
0 |
0
0 0 0 0 0 1]jalAT
<
1 =42 1 -2 1 0f} o
0
0 |
o). 0
—alAT[  |-120x1072
0 o of(R] [ 0 )
0 0 0|k 0
/42 1 of|B 0
=4
-1/\2 0 0||F4 0
0 0 1|Fs 0
242 1 of|F) [-60x10°)

(311.10)

(3.1111)

The {8R} in equation (3.11.11) is normalized with respect to 20/E (see eq. (3.11.6)). Forces due to AT= 100 °F in mem-
ber 3 are obtained by solving the IFM equation as
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R —545.45
28 771.39
Fy| |-54545
= (3.11.12)
Fy 77139
Fs —545.45
F 0 ),
Calculation of displacements.—Displacements at the nodes are calculated from the DDR as follows:
X, =B, =Bf +B
B¢ = (ﬁ) =-1090x1073
AE ),
Br =0
X; =-1.090x103in. (3.11.13)
Likewise, other displacements can be calculated:
X B1 —-1091
X, By +4/2B, 5.454
= = x10~%in. (3.11.14)
X3 Bs ~1091
X4 —([31 —\/3[32 +B3) —5.454

lustrative Example 12: A Ring Problem

A uniform circular ring of radius R, moment of inertia /, and Young’s modulus E is subjected to self-equilibrat-
ing forces as shown in figure 3.12(a). Determine the bending moment, axial force, and vertical displacement at A.

Step 0—Solution strategy: For the ring, the polar coordinates (r = R, 6) shown in figure 3.12(a) are used. Only
half of the ring needs to be considered because of symmetry. The free-body diagram of the half ring is shown in fig-
ure 3.12(b). The internal forces acting on the ring depicted in figure 3.12(b) at location B are the normal force Ny,
shear force Vp, and moment M > and at location A they are the normal force N, shear force V, = P/2, and moment
M. The value for V, = P/2 is obtained from equilibrium considerations, (see fig. 3.13(c)). There are five unknown
forces (N, M4, N, g Vg, M) but only three EE (N = 0, ZV =0, M = 0) can be written, so the problem is two-
degrees indeterminate.

Step 1—Formulate the equilibrium equations: The three EE are as follows:
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(a) Loads in a ring of radius R.

1
Mg 2P
NB_> B

(b) Free-body diagram for half ring.

?VA¢iiVA¢= P2

P2 P2

(c) Transverse EE at A.
Figure 3.12.- A ring problem.

NB—NA:() or NA=NB
P P

Vp——+—=0 or Vg =0

B 29 B

MA _£§_MB +NB(2R):0

(312.1)

The first two EE (EN = 0 and £V = 0) are trivial in nature. The moment EE in matrix notation can be written as

follows:

My "
[-1 —2R 1K N, ={—f—}
Mp

(312.2)

Two CC are required for the determination of forces. Rotation ¢ is considered to be the dual, or displacement,

variable of the EE.

Step 2—Derive the deformation displacement relations: The three DDR for the problem are
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Bs=9 (3.12.3)

The deformations (f3,, B,, B3) correspond to the forces (M, Ng, M), respectively.
Step 3—Generate the compatibility conditions: Two CC are obtained by eliminating the rotation ¢ from the
three DDR:

Ba—2RB; =0
B> +2RB3 =0 (3.12.4)
In matrix notation, the CC can be written as
2R 1 0 El o G125)
o 1t 2R [|7%{ o e
B3

The null property of the [B] and [C] matrices (BN CIT = [0]) can be verified as

2R 0
[-1 =2r 1] 1 1 ]|=[0 0] (3.12.6)
0 2R

Step 4—Formulate the force deformation relations: The FDR for the ring can be determined as

T
B] :i w a% de
EIJ " oM,
0
T
BZ :.ﬁ %%de
EIJ " 0N,
0
T
R o
By=— - —do (3.12.7)
B
0
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The bending moment for the problem can be defined in ranges AC and CB as follows:

7(0)=M, +NAR(1—cose)—%ISsin6 (intherange AC, 0£6<

oA

)

PR
7”(9)=MA+NAR(1_C°SG)__2" (intherangeCB, ESGSE)
2

o
—= (for both ranges. 0<6 <)
oM 4
. = R(1—-cos0) (for both ranges. 0 <9< 1)
ON 4
j?—,i =0 (for both ranges,0 <8 < m) (3.12.8)
oMp
/2 n
PR . PR
By = = J {MA + N4 R(1-cos8) ——-2—sm 6}(1)d9+ J{MA + N4 R(1-cos 6)—7}(1)51 0 (3.12.9a)
0 /2
R PR n
o =—<{AM 4 +TRNy ——| 1+ — 3.12.9b
" =g { ATEERATT ( 2 )} G1290)

Likewise, B, is obtained as

2
R 3 PR
=M 4 +~—RN4 ——(3+T1
B2 EI{ T ( )}

B3=0 (312.10)

Step 5—Express the compatibility conditions in terms of forces: Since B5 = 0, the two CC in deformations
become uncoupled equations as

B;y=0 and B, =0 (31211
The CC in forces can be written as
A
b4 R 0 %I-e— (1 g—]
Nyt= (3.12.12)
3nR PR
nw -—2— 0 —4- (3 + 7[)
Mp
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Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve
for forces:

-1 2R 1 |[My, -1
xR 0 [N, t=IR (1+£) (3.12.13)
2 2
r TR ||my (——3” )
! 2 ] 2

Solving the IFM equation yields the forces:

PR
MA T
Nyi= P (31214
27
1 1
M PR ———
B (n 4)

Other forces can be back-calculated as Ny = N, = P/2r and Vg =0.

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations: We
bypassed formulating a shear equilibrium equation at load application point A for the calculation of forces. This EE
is reinstated for the displacement calculation because the dual variable of this EE represents the displacement along
load P. The transverse EE at A is

2VA =P or VA =

P
— 31215
5 ( )

The DDR for this EE can be written as

B, =2v4 (31216)

where v, is the dual variable of the EE representing the transverse displacement at the load application point. The
deformation corresponding to the shear force V, can be calculated as

2n
B,=U _ R 1 4 (31217)
v, EI3T v

; o,
Because of symmetry, =2y, = J- W — 3V (3.12.18a)
A
or
T
vy = i %%de (3.12.18b)
v,
o 20%
vV, opP

NASA/TP—2004-207430 92



a—7}t—=—-1-e-sine (IntherangeAC, OSGSE)

oP 2 2

o __R (In the range CB, ~ <6< n) (3.12.19)
P 2 2

Rt om RF in 0 R T R
vy =— :m—d@:—j 2%(—Rs’” )d6+— jzm(——)de
Bl op ElY 2 ') 2
T

By integrating we obtain

PR (n 3
PR S 3.12.20
YA 2E1(2 2n) ( )

From the condition of symmetry, other two displacements at A (see fig. 3.12(b)), u, (displacement along N,), and ¢,
(rotation at A) are zero.

v .3
A 2 2n
or Uy p= PR’ 0 (3.12.21)
AT 2Er o
P4 0

Ilustrative Example 13: Three-Span Beam Under a Distributed Load

A three-span continuous beam made of a single material and under a uniformty distributed load is depicted in
figure 3.13(a). Each span has a length ¢, a uniform EJ, and a load intensity g per unit length. Analyze the beam for
moment and displacement.

Step 0—Solution strategy: The coordinate system (x, y) with its origin at A is shown in figure 3.13(a). Four
reactions (R, Ry, R, Rpy) are considered as the force unknowns of the problem, or » = 4. Two independent EE (one
transverse EE, SV = 0, and one rotational EE, M = 0) can be written, or m = 2. The beam is two-degrees indetermi-
nate (r = n — m = 2). We can, however, use the symmetry condition (R, = R, and R = R ) to reduce it to a two-
variable problem. This two-variable problem has one independent EE and one CC.

Calculation of shear force: Shear forces at the left and right of support B (VléZ Vg ) and, likewise, at support
C ch, V¢ | are defined. These force shear forces can be calculated from the diagrams shown in figure 3.13(b). From

figure 3.13(b) we can write

Ry+Va=qt or  Vi=ql-Ry

R4y +Rp+Vg =gt or Vg =ql-R4 —Rp

Likewise, VC’Z and V[ can be calculated as
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vE=2q0—R4—Rp

Vcr =2q€—RA—2RB

The free-body diagram for the beam with the shear forces is depicted in figure 3.13(c).
Step 1—Formulate the equilibrium equations: The transverse EE along the y-direction yields

2R, +2Rp =3ql (3.13.1)

The reader can verify that the moment equilibrium is automatically satisfied.
In matrix notation, the EE can be written as

R4
[ -]

2
Rp

= {— ﬁf} (3132)

The single EE is expressed in terms of two unknowns (R, Rp). Thus, one CC is required to solve the problem.
Step 2—Derive the deformation displacement relations: The DDR ({B} = (B17{x }) for the problem has the
following form:

Pr=—-X
By=—X (3.13.3)

Here, B, and B, are the deformations associated with reactions R, and Rp, respectively. The dual variable of the EE
is the displacement X.

Step 3—Generate the compatibiliry condition: The single CC is obtained by eliminating the displacement X
from the two DDR as

BB =0 (313.4a)

or in matrix notation,

[1 —1]{B ! } = {0} (313.4b)
B>
The correctness of the CC is verified from its null property (BICIF =[0]) as

1

-1 -1 |=(o]

1

Step 4—Formulate the force deformation relations: For the calculation of the FDR, the free-body diagram
shown in figure 3.13(c) is considered. The bending moments required to calculate the deformation are obtained for
the three spans separately. For simplicity, local coordinates are used for the FDR calculation because these are inde-
pendent of the coordinates.

Span AB: The free-body diagram of the span with moment, shear force, and external loads is shown in figure
13(c). The force equilibrium for the span can be verified by summation of the forces and moments. One can deter-
mine the bending moment (%f) for the first span AB by considering a local coordinate x., with the origin at A and the
axis measuring from A to B as shown in figure 3.13(d).
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(a) Three-span beam.
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(b) Shear force to the left and right of support B.
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(c) Free-body diagram for the beam.
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(d) Free-body diagram for the first span, AB.
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(e) Free-body diagram for the second span, BC.

Figure 3.13.- Three-span beam under distributed load.
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%f —RAXf - (31353)
(2
Moment at B: Mp =Ryt —T (3.13.5b)
Shear force at B: Vé =gl—-Ry
s o,
———=x; and —L =0 (3.13.5¢)
R, oRp

Span BC: For the central span BC, the local coordinate system (x,) is selected with its origin at B as shown in
figure 3.13(e).

2
gt
Moment at C: Because of symmetry, Mc=Mp=Rul— T

Shear force at C: Vi=2q¢—-R, -Rp

The moment function for span BC becomes

2
, =MB—(ql—RA—RB)xC—q;‘
or 2, =RA(Z+xC)+RBxC—%(€2+x62+2€xc)
o,
€ =(+x.) and C=x, (3.13.6)

R, Rz

Because of symmetry, span CD (which is identical to span AB) need not be considered separately.
The deformations 3, and 3, can be written as

o,

o
S _ ~pAB , qBC
Pr=s7 f%f TR, D) e R, dep =201 4By
Span AB Span BC
o o,
By =— {2]’7;@ aRf dx+_[7;z a——d} 2p58 +p5C (313.7)

The contribution to the deformation 3; from span CD is accounted for by doubling the value for span AB
because the first and last spans are symmetrical. Upon integration, the contribution from the first span, or the

deformation component {12, is obtained as

R f3 24
ag _ L [—A————ﬂ-] (3138)

T
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Likewise, the contribution from the central span, or the deformation component Bf ¢ , 1s obtained as

TRA03  SRp03 4
fc=(i)( al”  SRpl”  15¢¢ J (3.13.9)

El 3 6 8

Total deformation B, is obtained by adding the contributions from the three spans:

1 3 S5Rgpt® 1740%
~ L3R, 34208 ligt 313.10
B1 I [ A 3 ( )
Likewise, deformation [32 can be calculated as
SR  Rgt® 1740*
B, = | 2Ral”  Rp® 17 (G13.11)
EI 6 3 24

In the calculation of deformation [32, there is no contribution BQB = ( from the first (or third) spans because
0% /IR g = 0. In other words, the reaction Ry, at support B is not present explicitly in the moment function Wtf
In matrix notation, the deformation force relations can be written as

5 17
Bl 3 3 " RA 4 | o
/ 6 qy 8

U _4e (3.13.12)
B Ells 1 R EI |17
2 6 3,07 24

Step 5—Express the compatibility conditions in terms of reactions: In terms of reactions, the CC (B, -, =0)
can be written as

511 (7
[__ _} ={_‘1 } (31313)
6 2 12
Rp

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve
Jor forces:

-1 -1|[R4 -—%
=qf (313.14)
13 1 17
= —||Rp =L
6 2 12
Solution of the IFM equation yields the reactions:
Ry :
=g/ (3.13.15)
Rs| |1
5 10

Other forces and moments can be back-calculated from the reactions as
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Re=Rs ="
2
RD =RA :'gqf (31316)
The moment in the first span is given by
2t o5 31317
=73 > (3.1317)

The moment function 7, can be used for the third span; however, the coordinate (xf) has to be measured with its
origin at D and with its abscissa from D to C. The moment in the central span is

2
74
w, =— % + % - % qxc2 (here x,. is measured from B'to C,see fig. 3.13(e)) (3.1318)

Step 7—Calculate the displacement, if required, by integrating the moment curvature relations:
For span AB, -

d;wzf = Z:Tf = é[g glx; —q%] (313.19)
Upon integration,

wy =$[f—§x;—q;—i]+c1xf+cz (3.13.20)
Displacement we= 0at X = 0 and Xp= L,
or ¢y =0 and )= —%% (3.13.21a)

3 4 3

1| afxy  gx 0 x
and wp=—|—L Bl A el (313.21b)

EI| 15 24 40

The displacement function wffor span AB can be used for the third span CD by measuring xffrom D as mentioned
earlier.

For the span BC,
d2 02 Vi 2
we W _1|-ql7  gtxc  gxc (3.13.22)
dx? EI  EI{ 10 2 2
Upon integration,
2.2 3 4
1 —gl7x;  qfx;  gx;
|4 e (TP _ATe (4 + 3.13.23
e El[ 20 12 24 | T2 ( )
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The displacement w = 0 at x_ =0 and x_ = { yields the integration constants as

3
gl
=0 and = 3.13.24
2 ‘1= T20E] ( )

The displacement function for the central span has the following form:

2.2 3 4 3

—qt 0 ¢

w, = | T4 X | 4% 9% 47X (313.25)
EI\ 20 12 24 120

Illustrative Example 14: Portal Frame

A steel portal frame has the geometrical dimensions and load shown in figure 3.14(a). Analyze the problem for
moments, displacements, and rotations under load at C. The Young’s modulus of elasticity E is 30 000 ksi, and the
moments of inertia / are given in figure 3.14(a).

Step O—Solution strategy: The coordinate system (x, y) with its origin at A is shown in figure 3.14(a). For
analysis, the portal frame is divided into four elements and five nodes (4, B, C, D, E). It has a total of eight moment
unknowns (M, M, .. ., M), or n = 8. For simplicity, the five displacement unknowns (m = 5) considered are

(1) Displacement X, representing the sway of the portal frame (see fig. 3.14(a))
(2) Three rotations (65, 8., 8,,) at three locations (B, C, D), respectively
(3) Transverse displacement X_. at load application point C

The problem is three-degrees indeterminate (r = n — m = 3). For this analysis, only bending deformations are consid-
ered; axial deformations are neglected.

Step 1—Formulate the equilibrium equations: The free-body diagram shown in figure 3.14(b) is sufficient to
write the EE for the problem. The five EE along the five displacement degrees of freedom can be written as follows:

(1) Along the sway X, direction—The displacement along the y-direction at the top of the frame or along the
beam BCD is referred to as the sway displacement X . The force equilibrium along the sway direction for the beam
BCD yields the following EE:

M -M, Mg-M;

0 (3.14‘.1)

£ ly
(2) Along the rotation 6 g direction at B: My—-M3=0. (3.14.2)
(3) Along the rotation 6 - direction at C: My—-Ms5=0 (314.3)
(4) Along the rotation 6 p direction at D: Mg—M7=0 (3.14.4)
(5) Along the transverse displacement X, direction at C:
_[M3‘M4+M6‘M5 +PJ=° (3145)
%) {3

The EE are simplified by eliminating the length parameters (¢, = ¢, and ¢, = 2£;). The process makes the EE
dimensionless, and the load term (Ps) becomes an equivalent moment of 2592.0 kip-in. The five EE can be written in
matrix notation as
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B—» cYa D s
= in 4
I=360in. | £3=72in.
£5 =216 in.
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(b) Free-body diagram.
Figure 3.14.- Analysis of a portal frame.
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L -};- O 0 0 0 ?L —2}- M)
1 1 1 1M, .
0 1 -1 0 0 0 0 0 M; 0
M
0 0 0 1 -1 0 o o 74_-to (314.6)
M; 0
o 0 0 o0 0 1 -1 0|Ms | ¢
M
0O 0 1 1.2 2 0 0 |lm J
L by by & Ay U8
Since five EE are expressed in terms of eight unknown forces, three CC are required for their determination.
Step 2—Derive the deformation displacement relations: The eight DDR for the problem are as follows:
X 2X¢c
= =0c+——
B1 7 Bs=-6¢ 7
X 2X
By =——"+8p Bs =6p-—=
3 £
Xc X
R By =5>~0p
2 1
X X
By =0c+=% Bg =——% (314.7)
2 4

In the DDR, the eight deformations (B;, B, - . . , Bg) correspond to the eight moments (M;, M,, . . ., Mg),
respectively. The dual displacement variables of the five EE are X, 65, 0, 6, and X

Step 3—Generate the compatibility conditions: The five displacements are eliminated from the eight DDR to
obtain three CC:

8,1
B2

L1 1 w33 o0 o o7Pe
Ba

-1 0 0 2/3 2/3 1 1 0 =

1 0 0 0 0 0 0 Bs
Be

B7
Ps |
The null property ([B][C]” = 0) of the compatibility and equilibrium matrices can be verified as

(3.14.8)

(= = I -
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11z 2 ol
ly Ly £y & - -

-

._1.._L0 0 0 ()_.1._L—1 -1 1]
1 4 G bl o o
o 1 -1 o0 0o 0 0 o0y o ofl°00
3 23 o 290
0o 0 0 1 -1 0 0 0 =10 00 3149
1/3 2/3 0 (3149)
o 1 oo
o 0 0 0 0 1 -1 0 00 o
o 1 0
1

'7
o
o

Step 4—Formulate the force deformation relation: The FDR for a uniform beam of span ¢, subjected to end mo-
ments M, and M, and the corresponding deformations f; and Bj can be written (see eq. (2.48c)) as

{ﬁ;} B (%)[f ;:HAA;J’} (314.10)

The FDR can be specialized for the four beam elements of the problem as

B =6LE(2.4M1+1.2M2) Bs =—61§(0.4M5+0.2M6)
B, =BIE(1'2 M +24 M,) B =6LE(0.2 Ms +0.4 M)
Bs =EIE(O.8M3 +0.4 My) B, =8%(1.6M7 +0.8 My)
By =é(o.4 M; +08My) Bs =Elf(0'8 My +16 Mg) (314.11)

Step 5—Express the compatibility conditions in terms of forces: The CC can be expressed in moments by
eliminating deformations between the CC and the FDR:

: 3600 3600 0933 0667 0133 0.067 0.000 0.000
(—— 2400 -1200 0267 0533 0467 0.533 1600 0.800 |

0
E +=20> (314.12)
2400 1200 0.000 0.000 0.000 0000 0.800 1600 0

(Mg |

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and
solve for forces:
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H L 6

L

Solving the IFM equation yields the moments as

(M) [ 136.1)
M, | |-2133
My | |-2133
|Ms| _| 6179|
M; 617.9
Mg| |-2624
M;| |-2624
(Mg) | 870

Reactions can be back-calculated as follows.

Horizontal reactions (see fig. 3.14(b)):

At support A4, the reaction H 4 is along the positive x-direction:

My, — M
H,=—*—1-_112kip
31
At support B, the reaction Hp is along the negative x-direction:
M5 - M,
Hp = —7[;—8 = -L12kip

4
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L 95 9 o o =
£ 15 15
0 1 -1 0 0 0 0
0 0 0 1 -1 0 0
0 0 0 0 0 1 -1
0 0 : S

3.600 3.600 0933 0667 0133 0.067 0.000 0.000

-2400 -1200 0.267 0533 0467 0.533 1600 0.800

2.400 1200 0.000 0.000 0.000 0.000 0.800 1.600

(3.14.13)

(3.14.14)

(3.14.15a)

(3.14.15b)



Vertical reactions:

Atsupport 4, the vertical reaction ¥, can be calculated as

My —M;

Vy 7 = 5.77kip (3.14.16a)
2
At support E, the vertical reaction Vg becomes
Ms-M
Vg =L€—§-= 12.23 kip (3.14.16b)
3

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations: The
displacement under load P is

€ (B +Ba +B3)
2

Xc = é—z (36M; +3.6M, +08M3 +0.4M4)=-1611x10" in. (3.14.17)

Displacement X~ is along the negative y-axis, which is the direction of the external load. The sway displacement is

X, =B = %(2.41141 +12M,)=1225%10" in. (31418)

The portal sways along the positive x-axis.

Illustrative Example 15: Navier’s Table Problem

Structural indeterminacy was recognized by Navier (1785—1836) when he attempted to determine the four reac-
tions (Ry, R,, R3, Ry) along the four legs of a table that was subjected to a concentrated load P with eccentricities e,
and e  as shown in figure 3.15(a). He assumed that the symmetrical table was made of wood and that it was resting
ona lyevel floor made of a rigid material, such as stone. The distances between the legs along the x- and y-directions
were 2a and 2b, respectively. Solve the problem for the reactions and displacements.

Step 0—Solution strategy: For the table problem, the origin 4 of the coordinate system (x,y, z) is selected at the
center of the table top. The reactions (R}, R,, R3, R,) are the four force unknowns, or n = 4. The problem has three
equilibrium equations and three displacement variables (w, 8., Gy)—shown in figures 3.15(b), (c), and (d)—which
represent the dual variables of the three EE, or m = 3. The problem is one-degree indeterminate (» = n - m =1). For
the table problem, the reaction along the positive y-direction produces compression in the legs of the table as shown
in figure 3.15(a).

Step 1—Formulate the equilibrium equations: The three EE (the sum of the reactions, or ZV'= 0, and the sum of
the moments along the x- and y-directions, or £ _M =0 and ZyM = () can be written for the table problem as follows:
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z,V=0{-1 -1 -1 -l
>eM=0|a a -a -a =q—e P
ZyM=0 -b b b -b e, P

or [BKR} = {P} (3151)

where [B] is the (3 x 4) equilibrium matrix, and {R} and {P} represent the four reactions and the three load compo-
nents. The three EE are expressed in terms of four unknown reactions, so the table problem cannot be determined
from the EE alone. Navier was the first to recognize the indeterminate nature of this problem, which is one-degree
indeterminate. One CC is required for its solution.

Step 2—Derive the deformation displacement relations: The DDR ({B} = [BYT{X}) for the table problem can be
written as

ﬁl -1 a -b
w
ﬁz -1 a b
8 = ) —a b o, (315.2)
3 0
ﬁ4 -1 —a -b y

where the four deformations (B, B,, Bs, B,) along the four legs of the table correspond to the four reactions (R;, R,,
R;, R,), respectively. The three displacements {X}, which are the dual variables of the EE, represent one translation,
w, along the z-direction and two rotations, 8, and Gy, about the x- and y-axes, respectively.

Step 3—Generate the compatibility condition: The DDR contains four equations in terms of three displace-
ments. In other words, the four deformations are not independent. One relation between the four deformations can
be obtained by eliminating the three displacements from the four DDR:

Br—B2+B3-Bs=0
By
or -1 1 -1 P2l o (3153)
B3
Bs

Equation (3.15.3) represents the deformation compatibility condition ([C1{B} = {0}) for the table problem. Like the
EE, the CC is independent of the material of the structure.
The null property of the equilibrium and compatibility matrices (IB1[C]T = [0]) can be verified as

1
-1 -1 -1 -1 ) 0
a a -—-a -a ! =0 (3.15.4)
-b b b —b i 0
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/R1

(c) Average tilt about x-axis. (d) Average tilt about y-axis.

Figure 3.15.- IFM introduced through Navier's table problem.
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Step 4—Formulate the force deformation relations: The FDR for the problem can be written as

or
AE

Z—

B =%
B> =%
B3 =%
Ba =%
%=%=%=%=c0mm (3.15.5)

where ¢is the table height, A is the cross-sectional area of the legs, and E is the modulus of elasticity of the material

of the table legs.

Step 5—Express the compatibility conditions in terms of forces: The CC in forces is obtained by eliminating

deformations  in favor of reactions R as

7
E(Rl —Rz +R3-R4)=0

Ry

¢ Ry
—I1 -1 1 -1 =0 3156
AE [ ] Ry ( )

Ry

Step 6—Couple the equilibrium equations and compatibility conditions to obtain the IFM equations, and solve

or
for forces:

-1

a

-b

1

-1 -1 -1 Ry -P
a —-a -—-a R, _ —ey P (3.157)
b b -b Ry e P

-1 1 -1 Ry 0

In the homogeneous CC given by the fourth equation in (3.15.7), (¢/AE = 1) is set to unity. Solution of equation

(3.15.7) yields the forces:

where r .= e, /b and ry=e, /a.
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Ty
P 1+rx—ry
"4 1+r, +

l—r, +

1-r, -

(3158)

&~
= = =

Ty

%
y ne=r, =0
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When the load is placed at the center of the table, r, = ry= 0.0 and each leg carries one-quarter of the load.

&=&=&=m:§ (315.9)

Step 7—Back-calculate the displacement, if required, from the deformation displacement relations: Once inter-

nal forces are known, displacements can be calculated by back-substitution in the DDR given by equation (3.15.2)
and the FDR.

+B, +B3+
W= — Bl BZ [33 B4 = - ¢ (R1+R2+R3+R4)=""‘I')‘é—
4 4AE 4AFE
Br+By—B3—Bg4 ¢ Pley
6, = = (Ri+Ry —R3 —Ry)=- 2
4a 4AEa 4AEa
~B, —B4 + ¢ PL
0,=- Bi—Ba—Bs+Ba__ (R~ Ry — Ry +Ry) = €x (3.15.10)
4b 4AEb 4AEDb?
When the load is placed at the center of the table (r,_ = r,= 0), the average displacements become
£l
W —
AE
P
0, = ={ 90 (31511
4
Y r:r=ry=0 0

The three displacements—uniform displacement (w) along the transverse direction and two rotations (8,, Gy) are
depicted in figures 3.15(b), (c), and (d).

The transverse displacement (w) is along the negative y-direction, which also represents the load direction. Like-
wise, the rotations (6,, 8, ) are along the negative (clockwise) and positive (counterclockwise) directions, respectively
(see figs. 3.15(a), (b), and (c)).

In the solution of the table problem, the tabletop is assumed to be rigid, which can be readily visualized by an
examination of the displacements given by equation (3.15.10) and figures 3.15(b), (c), and (d). The assumption limits
the scope of the analysis to a certain extent.

NASA/TP—2004-207430 108



Chapter 4
Integrated Force Method and Dual

Integrated Force Method for
Finite Element Analysis

Internal forces and displacements are the primary unknowns of discrete structures, including frameworks (that is,
trusses and frames) and continuous structures (such as plates, shells, and solids) idealized by finite elements. For the
purpose of analysis, such structural models can be designated by two attributes, n and m, such as “structure (72, n1).”
The number of force unknowns or force degrees of freedom (*fof) is n. Likewise, the number of displacement
degrees of freedom ("dof) is m. Once the n forces {F} are determined, then the m displacements {X} can be back-
calculated from known forces, and vice versa. The method that treats all *fof as the principal unknowns is known as
the force method. Likewise, the method that treats all "dof as the principal unknowns is called the displacement
method. The force method and displacement method are the two fundamental structural mechanics formulations.

The displacement method, also known as the stiffness method (refs. 33 to 35), has been well researched and
developed during the past few decades. This method currently dominates the analysis scenario. Its governing equa-
tion is ([K]{X} = {P}), where [K] is the stiffness matrix, {X} is the displacement vector, and {P} is the load vector.
The method is indirect because forces and stresses are back-calculated from the displacements, and the derived quan-
tities can be susceptible to inaccuracies. Yet, the method is popular because of its simplicity, versatility, and com-
puter amenability. The stiffness method parallels the Navier’s displacement formulation in elasticity (see table Iin
the Preface).

The force method is the direct force determination formulation for structures. One would have anticipated
that all »n internal forces {F} would have been the primary unknowns of the force method with basic equations
([SI{F} = {P*}), where [S] is the governing matrix, and that the force method in structures would have paralleled the
Beltrami-Michel]l Formulation in elasticity (see table I). However, the classical force method, with redundants as the
unknowns, satisfies neither attribute. Although the redundant method is elegant for manual computation of small
problems for static loads, the classical formulation is cumbersome for computer automation; and for all practical
purposes, it has disappeared from current use. The redundant force method, which has considerable historical signifi-
cance, is described in references 30, 36, and 37.

A force method that could be considered equivalent to the Beltrami-Michell stress formulation in elasticity was
not available because the understanding and the development of the compatibility conditions (CC) were immature.
We have researched and have come to understand the CC of structural mechanics. We express the CC for discrete
analysis first in terms of deformations {B} as [C1{$} = 0 (here [C] is the compatibility matrix), then in terms of all
("fof) force variables as [CI[G]{F} = {OR} (here [G] is the flexibility matrix and {OR} is the effective initial defor-
mation vector). Thus, the classical, redundant-based, ad hoc compatibility has been replaced by the correct
CC representing the deformation balance conditions. The CC are coupled next with the equilibrium equations
[BI{F} = {P} (here [B] is the equilibrium matrix, {F} is the force vector, and {P} is the load vector), to obtain the
direct force determination method, which in the literature is referred to as the Integrated Force Method (IFM). The
IFM with forces { F} as the unknowns parallels the Beltrami-Michell Formulation in elasticity, with the governing
equation [S]{F} = {P}*. The IFM is as versatile as the stiffness method, and it is amenable to computer automation.
It produces accurate stress and displacement solutions, even for modest finite element models.

A dual formulation for the primal IFM, referred to as the Dual Integrated Force Method (IFMD), has been for-
mulated. The dual method uses the elemental matrices of IFM, but displacements are its primal unknowns with the
governing matrix ([D]{X} = {P}).
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Forces {F} in the dual method are backcalculated as {F} = [G]"![B]7{X}. The primal IFM and dual IFMD are
equivalent formulations and produce identical results for forces and displacements. In the earlier chapters, the IFM
was developed for elementary, indeterminate structural mechanics problems. In this chapter, the primal and the dual
methods are introduced for finite element analysis.

Equations of the Integrated Force Method

The IFM equations for a continuum discretized by finite elements with » and m force and displacement degrees
of freedom, respectively, are obtained by coupling the m EE and the (r = n - m) CC. The m equilibrium equations
([BI{F} = {P}) and the r compatibility conditions ({CI[GI{F} = {0R}), when combined to obtain the IFM governing
equations for static analysis, can be written as

[B] 1P}
o=l o SR ={PH @1

[€lla] {8R}

From forces {F}, displacements {X} are back-calculated with the following formula:

X3 =1lckF+{p°}} (42)

where [J]= m rows of [[S]'1 ]T.

The definitions of the matrices and vectors in equations (4.1) and (4.2) follow:

[B] is the (m x n) rectangular equilibrium matrix with more columns than rows. It is a very sparse, unsym-
metrical matrix with full row rank.

[G] is the (n X n) symmetrical flexibility matrix. It is a block-diagonal matrix, where each block represents a
flexibility matrix for an element.

[C] is the (r X n) compatibility matrix. The generation and properties of the compatibility matrix are explained
later in this chapter. {0R} = - [C]{B}O is the effective initial deformation vector. Here, {B}O is the initial deformation
vector of dimension #.

[S]is the (n x n) IFM governing unsymmetrical matrix defined in equation (4.1).

[J]is the (m X n) deformation coefficient matrix back-calculated from the [S] matrix.

The IFM has two key equations: equation (4.1) to calculate forces, and equation (4.2) to calculate displacements.
The familiar process of differentiation used in the popular stiffness method to generate stresses from displacements
is avoided in the IFM.

In terms of fundamental operators, an analogy can be made between the IFM and the theory of elasticity
(ref. 38). The three fundamental operators of elasticity are (1) the equilibrium operator of Cauchy, which relates
stresses to external loads; (2) the compatibility operator of St. Venant, which controls components of strain; and
(3) the material constitutive matrix of Hooke, which relate strains to stresses. Likewise, the IFM has three matrices
that are equivalent to the operators of elasticity theory. These operators, which become matrices in the context of
finite element analysis, are (1) the equilibrium matrix [B], which links internal forces to external loads; (2) the com-
patibility matrix [C], which governs the deformations ([C]{B} = {0}); and (3) the flexibility matrix [G], which relates
deformations and forces. Both the equilibrium and the compatibility operators of elasticity and the corresponding
matrices of the IFM are unsymmetrical, whereas the material constitutive matrix and the flexibility matrix are sym-
metrical.

Goveming operators of other formations (e.g., Navier’s displacement formulation, Airy’s stress function formu-
lation, Reissner’s hybrid formulation, or the Hu-Washizu’s mixed formulation) and the matrices of other discrete
analysis methods (such as the stiffness, redundant force, mixed, and hybrid methods, see table I) are, in principle,
derivable from the basic unsymmetrical operators of elasticity and the matrices of the IFM (see app. A). Mathemati-
cally speaking, the derived operators and matrices of other formulations can possess characteristics (i.e., the numeri-
cal norms, spectral radii, and stability of equation systems) no more superior than the basic unsymmetrical operators
of elasticity theory or the matrices of the IFM, even when the derived operators and matrices become symmetrical
(ref. 30).
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The frequency analysis equation of the IFM without damping is as follows:

[[S] —w? [[M—][g-]—[ﬂﬂ{zr} =0 (4.3)

where [M] is the (m x m) mass matrix, ® is the circular frequency, and {F?} is the force mode shape of the eigenvalue
problem.

Forces are the unknowns of the IFM vibration analysis. Displacement modes in IFM, if required, can be back-
calculated from forces {F} by using equation (4.2). In other words, the IFM provides one set of equations to deter-
mine forces (i.e., eq. (4.1) for static analysis or eq. (4.3) for vibration analysis) and provides another set for the
calculation of displacements (eq. (4.2)).

Equations of the Dual Integrated Force Method

The Dual Integrated Force Method (IFMD) is obtained by mapping forces into displacements (ref. 5). The basic
equations of the dual formulation, without initial deformations and damping, are summarized next.
Static analysis equations of the IFMD are as follows:

[DKX}={P} (4.4

Forces can be obtained from displacements by using the following formulas:

{F}=[G]"'[B]" {X} (45)
The dynamic analysis equations of the IFMD foliow:

[[P1-w?[M]}ix} =0 (46)

where the (m X m) symmetrical matrix ([D] = [B] [G]‘I[B]T) is assembled at the element level.

From the displacement modes, force mode shapes can be back-calculated by using equation (4.5). Like IFM,
the dual IFMD, which treats displacements as the primary variables, has one equation to calculate displacements (eq.
(4.4)) for static analysis or eq. (4.6) for dynamic analysis) and has one equation for the determination of forces from
displacements (eq. (4.5)). IFM and IFMD provide identical solutions for stresses, displacements, and frequencies.
For design and sensitivity analysis, the primal IFM, however, has some advantage over the dual IFMD (refs. 34 and 35).

Matrices of the Integrated Force Method

Three matrices are required for IFM finite element analysis—namely the equilibrium matrix [B], the flexibility
matrix [G], and the compatibility matrix {C]. The generation of the matrices is illustrated by considering a simple
rectangular plate-bending element as an example.

Generation of the equilibrium matrix [B].—The EE, written in terms of forces at the grid points of a finite ele-
ment model, represent the vectorial summation of » internal forces { '} and m external loads {P}. The nodal EE in
matrix notation give rise to a (m X n)-banded rectangular equilibrium matrix [B], which is independent of the material
properties and design parameters of the indeterminate structure (7, m). For finite element analysis, this matrix is
assembled from elemental equilibrium matrices.

The elemental equilibrium matrices [B¢] for bar and beam elements can be obtained from the direct force bal-
ance principle (ref. 37). For continuous structures, such as plates or shells, very few equilibrium matrices have
been reported in the literature (refs. 36 and 39). Equilibrium matrices for the plate flexure problem are given by
Przemieniecki (ref. 36) and Robinson (ref. 39). Przemieniecki generates the matrix for a rectangular plate in flexure
from direct application of the force balance principle at the nodes. Robinson utilizes the concept of virtual work to
derive the matrix for a rectangular-plate in flexure. The procedures of Przemieniecki and Robinson, which are
documented in their books (refs. 36 and 39), are not repeated here.
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Energy-equivalent equilibrium matrices for finite element analysis can be obtained from the IFM variational
functional (ref. 8). The procedure for generating an elemental equilibrium matrix from the IFM variational functional
is illustrated next for a rectangular-plate in flexure. The portion of the IFM functional (ref. 8) that yields the equilib-
rium matrix [B] for a plate flexure has the following explicit form:

3w 92w 2w T
U, = JD{MX M, 7 Moy = dxdy_fD{M} {e)ds 4.7

where {(M}7 = (M, M, M, ) are the plate-bending moments, and {e}T = (0*w/ox2, 2w/dy2, 02w/oxdy) represent the
curvatures. The plate domain is D, and the coordinates are x and y.

By appropriate choice of force and displacement functions, one can discretize the energy scalar Up to obtain the
elemental equilibrium matrix {B€]:

U, = {X}T[Be]{F} (48)

where the elemental displacement degrees of freedom are symbolized by {X} and the elemental force degrees of
freedom by {F}.
The force fields have to satisfy two mandatory requirements:

(1) The force fields must satisfy the homogeneous EE (here, the plate-bending equations in the element domain).
(2) The force components F, (k= 1,2,...,m) must be independent of one another. This condition ensures the kine-
matic stability of the element, and the resulting {B¢] matrix has a full column rank.

Consider a four-node, rectangular plate bending element of length (a, b) along the x- and y-axes, as shown in
figures 4.1(a) and (b). For the plate element, 12 equilibrium equations along directions S}, S,, . . ., S}, (which corre-
spond to ™dof = 12 for the element, as shown in fig. 4.1(b)) can be written. The internal element forces {F} (which
correspond to "fof = 9 for the problem) are different from the 12 nodal directions (S, S,, . . ., $1,).

Sg
S10
S1 S3 S12
S11
y A [~
VS, ¢
(a) Nodal displacements. (b) Nodal equilibrium.

Figure 4.1.- A rectangular element (PLB4SP) in flexure.
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For the rectangular plate, the force field is chosen in terms of nine independent forces as

{F}=(R, F.....F)

as
M, =F+Fx+Fy+Fxy
M, =Fs+Fgx+Fyy+Fgxy 4.9)
M, =F

Although the variation of the normal moments in the field is linear, the twisting moment is constant. The assumed

moments satisfy the mandatory requirements. The selection of force fields for advanced finite elements is given in
references 26 and 27.

The displacement field that should satisfy the continuity condition (ref. 34) is selected in terms of 12 variables to
match the three nodal degrees of freedom (the transverse nodal displacement w; and two rotations, 8,; and

., per
. . . . b
node i for the four nodes). It can be written in terms of Hermite polynomials as

w(x,y) = Hor (x)Ho1 ()X + Hoy (x)H 1 (y) X2
+Hyy (x)Hoy ()X3 + Hop (x)Hop (3) X4

+ Hop (x)Hp (y)X7 + Hop (x)H2 (3) X3

+ Hya (x)Hoa (y)Xg + Hop (x)Hop (¥)X10

+Hop (x)H11 (9)X11 + Hyp (1) Ho () X2 (4.10a)

In equation (4.10a), the Hermite polynomials are defined as

' 3 2 3

x” =3a“x+2a
H01(x)=4a—3
x3 -3a%x-243

HOZ(X): 4a3

ax? —a’x+a’

3
X3
Hyp(x)= 2

3

3 2 2
X —ax —a xXx—da
Hyp(x)= o2 (4.10b)

where X, X,,..., X 1, are the 12 degrees of freedom and a and b are the dimensions of the plate element along the x
and y-directions, respectively (fig. 4.1a). The Hermite polynomials for the y-direction can be obtained by changing

(x and a) to (y and b), respectively, in equation (4.10b). The displacement field equation {(eq. (4.10a)) gives rise to a
linear force distribution for the plate-bending problem.
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For finite element calculations, the force and displacement fields given by equations (4.9) and (4.10) can be
written as follows:

{M}=[Y)F.} (411)
{wi=[N}{U.} (412)

Here, {w} = (w), and {M}T = (M, M, M) are the displacement and moments at a location within the plate domain;
{U,} is the vector of element nodal displacements; [N] is the matrix of displacement interpolation functions; {F}€ is
the unknown force vector; and [Y] is the matrix of the moment interpolation functions. The curvature vector {€},
which is obtained by differentiation of the displacement field, can be written as

{e}=[z}{U.} (413)

where [Z] = [L][N], and [L}] is the matrix of differential operators.
The expression for the element equilibrium matrix [B#] is obtained from the strain energy given by equation
(4.7) by substituting equations (4.11) and (4.13) into equation (4.7). The element equilibrium matrix [B¢] can be

symbolized as
T
[5¢]=] 2] [¥}as 14)

The equilibrium matrix is obtained by substituting interpolation functions for moments and displacement, then inte-
grating. For the simple element, the integration can be completed in closed form. Equation (4.15) gives the equilib-
rium matrix [B¢] thus obtained. The generation of the equilibrium matrix [B¢] illustrated is a general procedure that
can be applied to any other element type. Henceforth, the matrix obtained from the strain energy function is referred

to as the consistent equilibrium matrix.

r 2 2 7
0 b 0 2"y o a 20,
2 53 2 52
0 2_ 0 -b _ 2a ab —2a°b 0
3 S 5 S
bo—ap X2, o L
5 5 3 15,

0 b o 2L 4 o o 2 o
2 53. 59
- - 942 242

0o b o, 2aT , ZE
3 , 15, 5 \ s,

b o—ap 2B 294 13- a9

R I i

0 b 0 0 0 -a 2
2 53 2 57
) D2

o 2 oo, o, 24,
3 , 5, 5 , 5,

b —ab -2b —2ab 0 0 —-a —-a 0
5 5 3 15

o w» o X o o . 2,
2 53 2 52

A oo, B, 22,
3 EN 5 ) 5

b -ab 20T 2, g L L

5 5 3 1 |
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The row and column dimensions of the equilibrium matrix [B€]Jcorrespond to the elemental displacement and force

degrees of freedom (here m = 12 and n = 9). The equilibrium matrix [B¢] has a full column rank of n = 9.
Generation of the flexibility matrix [G].—Generation of the flexibility matrix for the finite element analysis is

well established in the literature. It is obtained by discretization of the complementary strain energy expression U :

_1 T 3
U, =5 [ (M) [Dl{M}a (416)

where [D] is the compliance matrix of the material. Substituting the moment interpolation function given by equation
(4.11) into equation (4.16) yields U.. in terms of the flexibility matrix and force vector:

v =5 {F}Y [G.)IF.) @17

where the element flexibility matrix [G?] is
[c¢]= J.D[Y]T[D][Y]ds (4.18)
The complementary energy for this plate element in terms of moments takes the foliowing form:
Dy 2 g2 2
U, = (Tj J{MX + M} —2VM M +(1+ V)M ,}dx dy (4.19)

where D, = (ER3/12); E is the Young’s modulus, v is the Poisson’s ratio, and % is the plate thickness. The (9 x 9)
symmetrical flexibility matrix, which can be integrated in closed form, is obtained as

10 0 0 v 0 0 0 0
2 2
o L o 0 0o -Y2_ 9 0 0
3 3
2 2
0 0 L 0 o o Y 0 0
3 3
2;2 2.2
0 0 0 ab’ 5 0o Yab 0
9 9
[Ge]=48"b v 0 0 0 10 0 0 0 (4.20)
Et3
de a2
0o - 9 0 0o Z 0 0 0
3 3
2 2
o o YO 0 0 0 L 0 0
3 3
2;2 2,2
0 0 0o -Yab o4 0 a’b 0
9 9
0 o0 0 0 0 0 0 0 2(1+v)]

The symmetrical (n x n) flexibility matrix [G¢] has a full rank of n = 9.

Generation of the compatibility matrix [C].—The compatibility conditions are controller types of relations.
For finite element discrete analysis, the balancing of deformations (f(,, B, . . ., B,) = 0) is the central compatibility
concept. The procedure given earlier to generate the equilibrium and flexibility matrices cannot be applied for the
generation of the CC. Instead, the CC and the associated coefficient matrix [C] are obtained as an extension of
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St. Venant’s strain formulation in elasticity. The strain formulation is reviewed first through the plane stress elasticity
problem and then it is extended to finite element analysis. The strain displacement relations for the elasticity problem
are

Jdu ov du ov

€ — Yy =—+—

T Y 9y Vo 9y ox

where £, €, and Yyy are the strain components, and  and v are the displacements. The CC in elasticity are obtained
by eliminating the two displacements from the three strain displacement relations:

(4.21a)

9%e 828y azyxy
ay; = =0 (4.21b)

The two steps that generate the CC are

(1) Establish the strain displacement relations given by equation (4.21a).
(2) Eliminate displacements from the strain displacement relations to obtain the CC given by equation (4.21b).

In the mechanics of discrete structures, the deformation displacement relations (DDR) are equivalent to the strain
displacement relations in elasticity, and the deformations {B} of discrete analysis are analogous to the strains {€}
in elasticity. We obtain the DDR by utilizing the equality relation between internal strain energy (1/2{F Ty B}) and
external work (1/2{X }T{PY), which for a discrete structure (n, m) can be written as

-;—{F}T{B} - %{X}T{P} (4222)

We can rewrite equation (4.22a) by eliminating the load vector { P} in favor of internal forces { F'}, by using the EE
([BI{F} = {P}) to obtain

1 onT _ et
5 (XY [BXF} = {F}" {B}

or %{F}T 8" x1-{g}} =0 (4.22b)

Since the force {F} is arbitrary and it is not a null vector, we finally obtain the following relation between defor-
mations and nodal displacements:

{8} =[B]" {x} (4.23)

Equation (4.23) represents the global DDR of a finite element model whose system EE are given as [B]{F} = {P}.
In equation (4.23), n deformations {B} are expressed in terms of m displacements {X}; thus, there are r=n - m
constraints on deformations, which represent the r CC of the structure (n, m). We can obtain the r CC by eliminating
the m displacements from the n DDR. In matrix notation, the CC can be written as

[€]{B} = {0} (4.242)
The deformation {B} in equation (4.24a) represents total deformation, consisting of initial deformations {8 30

and elastic deformations {}€ as {B} = {B}¢+ {B1°. The CC, in terms of the elastic deformations {B}¢, are as
follows:

[} ={oR}  and  [8R}=-{C]{B}’ (4.24b)

Since {B}¢ = [G]{F}, the compatibility condition in forces can be written as [C][G1{F} = {8R}.

The matrix [C] has the dimensions (r X n). It is rectangular and banded, with a full row rank of r. The CC are
kinematic relationships, and these are independent of sizing design parameters (such as the area of the bars, the
moments of inertia of the beams, and the thickness of the plates), material properties, and external loads. The CC
depend on the initial deformation in the structure.
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An important attribute of compatibility conditions.—Because the compatibility condition in total deformations
is a homogeneous equation ([C]{B} = {0}), an alternate matrix [—C—] obtained by linear combination of the rows of the
matrix [C] still represents a compatibility matrix that can be used in IFM analysis. The concept is illustrated through
the 11-bar indeterminate truss (11, 9) shown in figure 4.2 with "fof = 11, "dof = 9, and r = 2. Its 11 DDR ({B} =
[BIT{X}) have the following explicit form:

B 0
B» 0
Bs 0
Byl |—v2/2
Bs -1
Bg t=| O
8, 0
Bg 0
Bo 0
Bio 0
Bu) L o

The DDR for the truss are obtained first by writing the EE ([B]{F} = {P}) and then {B} = [B1T{X}. The nine

1 0 0 0 0 0 0
0 0 V212 2720 0 0
0 0 0 0 0 0 0

N2/2 =212 0 0 0o 0 0
0 0 1 0 0 0 0
0 -1 0 1 0 0 0

212 =2/12 0 0 0 J2/2 V212
-1 0 0 0 1 0 0
0 0 =272 V272 272 0 0
0 0 -1 0 0 1 0
0 0 0 0 0 0 1

displacements are labeled in figure 4.2. The 11 deformations {B)} represent elongations due to force in the

11 bars of the truss. Two compatibility conditions are obtained by eliminating the nine displacements from the

eleven deformation-displacement relations given by equation (4.25) as

NASA/TP—2004-207430
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B —v2B7 +Bg —v2Bg +B1o +B11 =0

(4.25)

(4.26a)

(4.26b)



X3
@ ® -

2} X2

— X

Figure 4.2.- Eleven-bar truss.

By combining equations (4.26a) and (4.26b), we can obtain the (2 x 11) compatibility matrix [C] as

[C]zl—ﬁl—ﬁllooooo
0 0 0 0 01 =2 1 =211

For the truss (9, 11), the CCis a (2 x 11) matrix. Because the CC are homogeneous equations ([C]{3} = 0), through

linear combination of the rows of the [C], the following full matrix can be obtained

[_] B L.000 1.000 1000 -1417 -1417 0.874 -0.012 -0.012 0.018 0.018 -0.012
T1-0012 -0012 -0.012 0.018 0.018 0.874 1000 1000 -1417 -1417 1.000

(4.27)

(4.26¢)

The full matrix [E] can be used in IFM analysis. Theoretically speaking, there is the danger of generating a full
compatibility matrix, destroying its banded nature. Several different procedures have been attempted to eliminate the
deficiency associated with the generation of the homogeneous equations. The conclusion, however, is that a direct
elimination of displacements from the DDR with row pivoting usually produces a well-banded matrix [C]. Elaborate
schemes do not provide much superior results. The recommendation, therefore, is to follow direct elimination with
adequate precision to reduce round-off errors, which can increase the bandwidth. With the fast, improved computa-
tion facility that is currently available, a few additional entries in the [C] matrix do not pose a problem. It should be
pointed out that a direct assembly of the CC for a general finite element application, even when possible, would not
be likely to substantially improve the compatibility conditions.

Bandwidth of the Compatibility Conditions

The compatibility conditions of finite element models are banded. On the basis of bandwidth considerations, the
CC can be divided into three distinct categories: interface, cluster or field, and external CC. For the finite element
model shown in figure 4.3, the three types of CC are illustrated in figure 4.4.

Interface compatibility conditions.—Numerous interfaces internal to the structure are created in the finite ele-
ment discretization process. The interface is the common boundary shared by two or more finite elements. In the
figure 4.3 finite element model, the common boundary along nodes 1 and 7 is the interface between elements 1
and 2, the boundary connecting nodes 12 and 17 is the interface between elements 13 and 14, and so on. Consider
the interface between elements 1 and 2 as shown in figure 4.4(a). The deformations of elements 1 and 2 must be
compatible along the common boundary defined by nodes 1 and 7, which gives rise to the interface CC. The number

NASA/TP—2004-207430 118



Figure 4.3.- Finite-element model. Elements are circled.

(a) Interface CC.

e
®| v | @ 4

3
@@®1®

2 3

(b) Cluster or field CC. (c) External CC.

Figure 4.4.- Bandwidth of compatibility conditions (CC).

of CC at the interface depends on the element types (membrane, flexure, solid tetrahedron, etc.) and their numbers.

The maximum bandwidth of the interface compatibility conditions (MBW,_ ) can be calculated as

JT

MBW,ee = Y (fofy;) (4.282)

j=1

where JT is the total number of elements present at the interface and fofej represents the force degrees of freedom of
the element j present at the interface.

The bandwidth MBW,_ . represents the maximum bandwidths of the interface compatibility conditions written
either in terms of forces {F}, as in [C][G){F} = 0 (where we are referring to the bandwidth of the product matrix
([CI[GD)), or in terms of deformations {B}, as in [C]{B} = {0} (where the bandwidth is that of the compatibility
matrix [C]). The actual bandwidth of the compatibility matrix [C] is smaller than its maximum bandwidth.

The interface CC of discrete analysis are analogous to the BCC in elasticity (ref. 21). The interface CC are the
most numerous compatibility conditions in any finite element model. These can be generated by writing the deforma-
tion displacement relation of the local region (such as shown in fig. 4.4(a) for the interface defined by nodes 1 and 7)
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and then eliminating the displacements from the local DDR. For the interface shown in figure 4.4(a), there are two
elements (i.e., /T = 2). Let us assume that both are membrane elements; the fof of the triangular element fof, is 3 and
that of the quadrilateral element fofq is 5. Then, the MBW, . calculated from equation (4.28a) is 8.

Cluster, or field, compatibility conditions.—Consider any element in the model shown in figure 4.3, for exam-
ple, element 19. This element, along with its eight neighboring elements, is also shown in figure 4.4(b). The deforma-
tions of element 19 must be compatible with those of its neighboring elements (14 to 16, 18, and 20 to 23). For such
a cluster of elements, the CC are referred to as cluster or field CC, which essentially represent St. Venant’s strain
formulation in the field. The maximum bandwidth of the cluster CC can be calculated as

JIC

MBW,.. = Y (fof,;) (4.28b)
j=1

where JTC is equal to the total number of elements present in the cluster. If we assume that there are five force
degrees of freedom for quadrilateral elements and three for triangular elements, the bandwidth calculated from equa-
tion (4.28b) is MBW,_ . = 41.

External compatibility conditions.-—Reactions are induced at restrained nodes. If such restraints on the bound-
ary exceed the number of rigid-body motions of the structure, then it is externally indeterminate. The degree of
external indeterminacy R, , can be calculated as

Ry =N, - Ny (4.28¢)

where N is the number of displacement components suppressed on the boundary and Nfis the number of boundary
conditions required only for the kinematic stability of the structure.

Let us assume that the finite element model shown in figure 4.3 represents a membrane structure. Then,
R,.. =7 - 3 =4, since the number of actual boundary restraints is N, = 7 and the kinematic stability requirement
is N.= 3. To calculate the bandwidth of the external CC, separate the local region connecting any two restrained
boundary nodes. Let the number of elements between the two nodes be represented by JTE, then the maximum band-
width of the external CC (MBW,_ ) is given by

JTE
MBW,e. =Y (fof;) (4.28d)

j=1

If we assume, as before, that there are five and three force degrees of freedom for the quadrilateral and triangular
elements, respectively, then the maximum bandwidth of the external CC for the boundary segment shown in figure
4.4(c)is MBW, .= 8.

The interface, cluster, and external CC are the local constraints. All three categories of local conditions are con-
catenated together to form the system, or global CC, of the structure (1, m). The sum of the number of interface (r;,.),
cluster (), and external (r,..) CC is equal to the r = n - m of the structure (n, m); thatis, r = r; . + Tece t Focer

Our recommendation is to generate the CC by direct elimination of m displacements from the n# DDR. Once the
CC have been generated, their bandwidth can be checked against equations (4.28a), (4.28b), and (4.28d).

The equilibrium equations and the compatibility conditions are linked through the DDR. We can obtain the EE
from the DDR through variational concepts of advanced calculus, and a direct elimination of displacements from the
DDR yields the CC. The null product property (see eq. (2.17)) of the two fundamental matrices ([B} and [C]) implies

that error in the EE can propagate to the CC and vice versa.

Illustrative Example 16: Fixed Bar

Integrated Force Method.—The IFM analysis process can be illustrated through the fixed bar that was solved
in chapter 3, Illustrative Example 1. This bar is subjected to thermomechanical loads. Such a bar, along with its end
conditions and analysis parameters, is depicted in figure 4.5(a). The total length of the bar is 3L. It is idealized by
three finite elements consisting of a central element and two boundary elements of equal length L. The cross-
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Area=A Area = 2A Area= A
Cross section Cross section Cross section
a-a b-b c-C

(a) Fixed bar.
X Py X

P,
- | -

(] ==~ []

(b) Discretized bar (3,2).

Figure 4.5.- Analysis of a bar by the Integrated Force Method, showing (Pq and Py),
bar forces (F1, F, and F3), nodal displacements (Xq and X3}, and lengths of
elements (¢£).

sectional areas of the boundary elements A are equal, and the area of the central element is 2A. The bar is made of
steel, its Young’s modulus is E, and its coefficient of thermal expansion is o. It is subjected to mechanical loads P
and P, at one-third and two-thirds of its length. The temperature distribution of the central element is 7, and the
temperatures of the boundary elements are equal to T;. The IFM and IFMD solutions are illustrated for this problem.

IFM solution for the fixed bar.—The IFM solution requires three matrices: [B], [G], and [C] (see eq. (4.1)).
The equilibrium matrix [B] and the flexibility matrix [G] are assembled from their elemental matrices. The compat-
ibility matrix [C] is obtained by eliminating displacements from the deformation displacement relations. The genera-
tion of the matrices for the problem, following the procedure given earlier in this chapter, is described next.

Elemental matrices for a bar element: By following the procedure that was illustrated for the plate element in
equations (4.7) to (4.20), we can obtain the element matrices for the bar. The equilibrium matrix is generated for the
following displacement and stress fields:

=iy + "2 ;ul Xp = (1 —%)ul +(%)u2 (4.29)
F

o=— 430

1 (4.30)

where u; and u, are the axial nodal displacements for nodes 1 and 2, respectively, in the local system (x,, y,) as
shown in figure 4.6. The uniform internal force in the bar is F, the associated stress is 6, and the area of the bar is A.
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Figure 4.6.- Axial nodal displacements. (z
d Xg

Figure 4.7.- Nodal displacements for
a truss element in a global system.

The displacement in the field u varies linearly along the length of the bar. Equations (4.29) and (4.30) can be rewrit-
ten using the interpolation functions given by equations (4.11), (4.12), and (4.13), as follows:

(o} =1rKF}=| 5 )

-1 -[1-2 x| )
us Uy
5 u uj
{2ty =[5 1]
Uy Uy
[ﬂ:ﬂﬂﬂ:&%-ﬂ @31)

The elemental equilibrium matrix becomes

p1=ﬁaﬁn@

! _

—-1/L
| M}Adx
AR

or [Be] = __i } (432)
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The equilibrium matrix for a truss element in local coordinates is a (2 X 1) matrix. Its rows correspond to the two
displacements (u,, u,). Its single column corresponds to the internal force F.

The equilibrium matrix can be written in global coordinates (xg, y g) by expressing the displacement u in terms
of the nodal displacement as shown in figure 4.7. In this figure, (X;, X,) and (X, X,) represent the global nodal dis-
placements at node 1 and 2, respectively. The bar orientation (local x, -axis) with respect to the global axes (xg, yg)
is 0. Let us define ¢and m as the direction cosines (for the bar AB) of the angles between line AB and the X and
yg-axis, respectively. The nodal displacements (u, 4,) can be written as

X
23] _ V4 m 0 0 X2 _
MR
Xy

The displacement in terms of nodal displacements (X;, X, X3, X,) can be written as
uq '
wp=IVg,! =V

or [Z]=[L][N][7] (4.34)

The equilibrium matrix | B | in the global nodal displacement {X} can be written as
g

[e]= P o ]I Jao
: 2

The equilibrium matrix for a bar element in global coordination is a (4 x 1) matrix that corresponds to the four global
displacements (X, X,, X3, Xy, as follows:

-,
AR (436)

m

The equilibrium matrix [B] in IFM equation (4.1} is written in global coordinates. Thus, the matrix [Bg ] given in

equation (4.36) should be used to assembie the system equilibrium matrix [B].
The flexibility matrix for the bar element is obtained by substitution in equation (4.18) as

B f[Y]T[D][Y] dv (437)
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For the bar element,

o LT
or [6¢]= (}4%) (438)

The flexibility matrix is a (1 x 1) matrix because the bar has a single force unknown (F).

For illustrative example 16, three bar elements are used to discretize the structure, as shown in figure 4.5(b). The
nodes and forces are labeled to match the quantities in figure 3.1. The force and displacement degrees of freedom of
the structure shown in figure 4.5(b) are as follows:

(1) Force degrees of freedom: Each bar element is idealized by one internal force, or the structure has three
force degrees of freedom (*fof=3; F 1 Fo F 3)-

(2) Displacement degrees of freedom: The structure has two displacement degrees of freedom, one at each of its
two free nodes, 2 and 3, ("dof = 2; X;, X,). For the IFM analysis, the structure is designated as bar (3, 2). It has
m = 2 equilibrium equations and r = n - m = 1 compatibility condition. The local and global systems for the problem
are identical, or direction cosines ¢ = 1 and m = 0; thus, the local coordinates can be used to solve the problem.

Equilibrium equations.—The two-system EE of the bar are assembled from the three elemental EE (see eq.
(4.32)):

Bar 1 (refer to fig. 4.5(b))

dof
I 1« fof
[Ble] e (4.392)
0| 1 '
Bar 2
-~ 2-
27 -1
[Bze] =1l (4.39b)
Bar3 o7
3
o -17
[336] = (4.39¢)

The (2 X 3) system equilibrium matrix [B] is obtained by following the standard finite element assembly
technique:

1 2 3« fof
gt 10 4.39d
[]—2 0 -1 1 (4.39d)
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and the two EE can be written as

R

-1 o) [A 4300
o -1 1127 -m 78
12

The EE given by equation (4.39) is identical to equation (3.1.1c) from example 1 in chapter 2.
Flexibility matrix.—The elemental flexibility matrix for the bar is a (1 X 1) matrix [G¢] = ¢/AE. The flexibility
matrix [G] for the structure is obtained by concatenating the elemental matrices along the diagonal as follows:

. _
AE
Gl= B — 4.40
[G] AE (4.40)

L

] AE

Compatibility conditions.—The first step in obtaining the CC is to establish the DDR B} = [BIT{X}). The
three-component deformation vector {B} corresponds to the three elemental expansions due to forces F, F,, and F,
respectively. This deformation vector is related to the displacements (X, X,) by the DDR ({B} = [BI7{X}), which
has the following form:

B1 -1 0
X
Byt=| 1 -1 {Xl} (4.41a)
Bs 0 1

The two displacements are eliminated from the three DDR to obtain one CC (r=n - m =3 - 2=1). In terms of
deformations, the CC, [C]{B} = {0}, has the following explicit form:

B1
[1 1t 1B, ={0} (4.41b)
B3

The CC constrains the total elongation of the bars to zero (B, + B, + 5 = 0). For this simple case, this could have
been asserted also by observation. ,
From equation (4.41b), the compatibility matrix [C] is obtained as

[€1=[t 1 1] (4.41¢c)

The correctness of the matrix [C] can be ascertained from its null property [B][C]T =0, here

_1101—0 4.41d
0—111‘0 (4.41d)
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Effective initial deformations.—Prescribed deformations due to other effects (here, thermal expansion) are
accommodated in the effective initial deformation vector {6R}. The effective initial deformation vector, which is
obtained from initial deformations {B}o and the compatibility matrix [C], has the following form:

By T
BY L= ati Ty (4.42a)
B3 T

The vector {SR} is obtained from the formula {8R} = -[C]{B}° as
[8R} = —a(2Ty +T5 )L (4.42b)

Consider the temperature distributions T, = T,,/2 and T, = - T},. For this temperature distribution, the effective
initial deformation vector {8R} = 0. Since {OR} is zero, such compatible initial deformations do not induce forces in
the structure.

From the definition of matrices [B], [C], [G], and {OR}, the final governing IFM equation ([S]{F} = {P*Dis
assembled as

1 -1 01(A -P
0 1 -1 F2 = —Pz (443)
1 A/Ay  1||F ESR/L

The CC or the third equation in equation (4.43) is scaled by multiplying it with the factor E/¢. The scaling process
makes the governing IFM matrix [S] dimensionless. Solution of equation (4.43) yields the forces from which dis-
placements are calculated by back-substitution (from eq. (4.2)).

Numerical results.—The parameters of the example are as follows:

(1) Lengths of the bars: L, =L, =L ;=10 in.

(2) Cross-sectional areas: A; = A3 =1 in.2 and Ay=2 in.2
(3) Modulus of elasticity: £ = 30 000 ksi

(4) Coefficient of thermal expansion: 6x10~6 per °F

Case I—Mechanical loads only: The extemal loads are P, = 10 kips, P, = 20 kips, and 8R = 0.

Internal forces are

I3 14
F 2(= 4
B |16

kips

Nodal displacements can be calculated from equation (4.2) as

-3
x| [467)%
X[ |533f,
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Case 2—Nonuniform temperature: The thermal load corresponds to an increase of temperature distribution for
the central span, or T; =0 °F, T, = 2000 °F, and 73 = 0 °F.

2} -144
Internal forces: F, =1 —144
F —144
kips
Nodal displ e 0.048
0 ac S =
al displacemen X, 0048 |
m
Case 3—Uniform temperature: In this case, T) = T, = T3 = 2000 °F.
H 432
Internal forces: Fy p=—1432
F 432 Kips

. X 0.024
Nodal displacements: =
X5 -0.024),

Dual Integrated Force Method.—A dual formulation of the primal IFM has been developed. This formulation
is termed the dual Integrated Force Method, or IFMD. The dual method is obtained from the IFM equations by map-
ping forces into displacements at the element level. Like the IFM, the dual method has two sets of equations. The
first (or primary set), which represents a symmetrical set of equation (4.5), is used to calculate the displacements
(see eq. (4.4)). Forces (or stresses) are back-calculated from the secondary set of equations. IFM and IFMD are
analytically equivalent—producing identical analysis results for stresses, displacements, frequencies, and buckling
loads. The dual method does not utilize differentiation to calculate stresses. The primary equations of the dual
method closely resemble the equations of the popular stiffness method. Significant differences and similarities
between the dual and the stiffness methods are

(1) The IFMD has two sets of formulas: one for the determination of displacements and another for the calcula-
tion of forces or stresses. The stiffness method has one set of equations to calculate displacements. Stresses in the
stiffness method are calculated by differentiating the approximate displacements to calculate strains, which can be a
source of error, and then transforming strains to stresses.

(2) The stiffness method utilizes the differentiation of approximate displacements to calculate stresses, which is
avoided in the IFMD.

(3) The symmetrical equations of the IFMD can use the solvers that have been developed for the stiffness
method. In fact, a stiffness code can be changed into an IFMD code without substantial modification.

The dual method developed and illustrated in this chapter is obtained from the four basic IFM equations:

Equilibrium equations: [BYF}={P} (4.442)
Compatibility conditions: [cl{B} =10} (4.44b)
Flexibility relations: {8} = {B}-{B}° =[G}{F} (4.44c)
Deformation displacement relations: B} =[B]" {x} (4.44d)
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The IFM is obtained from these equations with forces as the primary unknowns: [S]{F} = {P}*. We can obtain
the IFMD from these equations by considering the displacement {X} as the primary unknown in the following two
steps.

Step 1—Eliminate deformations { B} between the flexibility relations and the DDR to obtain the following force
displacement relations:

- - 0
{F}=[61""[B1" {x}-[G]'{B} (4.45)
Step 2—Eliminate forces between the EE and the FDR to obtain the primary equation of the IFMD:

{[B] (1" [B]T}{X} - {P}+{[B] (6" [510} @0

mxn nxn nxm jmxl mxl mxn nxn npx}

or [D)ipna 1%} ={P}ip0a (4.46b)
mxm X1 mx1
where [D)ia = [BIIGT ' [B]"

1Pl yma ={{PH+([BIG1{8}°)}

The governing equation appears to be similar to the stiffness equation, with some variation in the load term.
Once displacements are known from the solution to equation (4.46), the force displacement relation given by equa-
tion (4.45) is used to back-calculate forces. Equation (4.46) is the primary equation, and equation (4.45) is the sec-
ondary equation of the IFMD.

Assembly of matrix [D],, ,.—The dual matrix [D],, ,is assembled from elemental matrices in a process quite
similar to the regular stiffness method. The assembly of the dual matrix [D] ifind is illustrated here by considering the
structure with three bars as an example (see fig. 4.5). Let the elemental equilibrium and flexibility matrices of the
structure be represented by [Ble], [B?], [B3¢), and [G!¢], (G?¢], (G3e], respectively. The assembled equilibrium ma-
trix [B] of the structure can be written as

[B]=[Ble ! p2e ! BBe] (4.47)
The flexibility matrix [G] is a concatenation of elemental matrices along the diagonal:

[6]

[G]= [6%] - (448)

[5*]

By using elemental equilibrium and flexibility matrices, we can define the following elemental pseudostiffness
matrix:

[D]ipmd—e :[Be][Ge]—l[Be]T (4.492)
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Equivalent elemental loads are defined as

{P} hermar—e = [Ble[G].™ {Be}o (4.49b)

By substituting equations (4.47) and (4.48) into equation (4.46a) and expanding in terms of elemental matrices, we
obtain

1 T 1 T 1 T [BIE] [Gle]_ll {Ble}:"
[ T TP e T B J= o] ] 7 s
[B3e ] [G3e ] {B3e }

We can write the system matrix of the IFMD as
[Dlipna = [Difmd—el | Dipmd—e2 | Diﬁnd—e3] (4.51)

{P } thermal_1
{P}ifmd = {P} + {P}thermal_Z
{P } thermal_3
The pseudostiffness matrix [D] ifind for the finite element model can be assembled from the equivalent elemental
matrices by following the standard stiffness assembly technique. The formulation of the mechanical nodal load

vector {P} also follows the regular stiffness assembly procedure.
The three-bar example used earlier to illustrate the IFM is used again to illustrate the IFMD solution process.

Step 1—Generate the elemental pseudostiffness matrices and load vectors:

Equilibrium matrix: [B e] = [—‘11]

Inverse of flexibility matrix: [Ge ]_1 = [ﬁf_jl
Pseudostiffness matrix : [D],-ﬁnd_e = [Be][Ge]—l[B E]T = (_A;)[_ll _ﬂ
Equivalent thermal load: {P}thermal—e = {_iil[A_f']{Bo} = ('{%: B ){_i}
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Step 2—Formulate the governing equation for the problem by using elemental matrices and vectors:

Degrees of freedom (fig. 4.5(e)) —

) 0 1 i 1 2 i 2 0

1 1 -1 i -1 1 -1 (X

(ﬂ) ! (ﬂ) | (é_E_)
i ¢ AW

A 12 -1 1 -1 1| |x,
Element 1 i Element 2 E Element 3

1(R 0 0 -1 1 0 -1 2(, .0 -1
AE

_ ’ [B ;EJ . (__ﬁ ;‘E] + (——B . ] (4.52a)

2|F, 1 1 2 1 0 1

Element 1 Element 2 Element 3

Equation (4.52a) can be simplified for the parameters of the problem (4| = A, = 1.0 in.2 and A;=20 in.2) to obtain
the following equations of the dual method:

Case!l Case?2 Case3
3 2](x 10 " —20 AT, o ¢ ATy —20 AT,
(?) R T T (4:526)
-2 3]|x, 20 20 AT, —C AT, +20 AT,

Solution of equation (4.52b) yields the following values for the displacements for the three load cases:
X 0.4667 -0.048 -0.024
= , , (4.53)
X2 Jinen 105333 0.048 0.024

We can calculate the forces from equation (4.45) as

2 14 144 432
Bl =1 4} 144}, _l432 (4.54)
Bl -6 144 432

P Casel Case2 Case3

The solution generated by the dual IFMD agrees with that of the primal IFM. Both the primal IFM and IFMD
are based on identical sets of equations. These are the equilibrium equations, the compatibility conditions, the defor-
mation force relations, and the deformation displacement relations. Only the solution order is changed. That is, in the
primal IFM, forces are determined first and then displacements are back-calculated. In the IFMD, the reverse order is
followed; that is, displacements are determined first and then forces are back-calculated. Therefore, the primal IFM
and its dual IFMD yield identical solutions. The IFMD can be considered to be the true displacement method. The
governing equations of the IFMD and the popular stiffness method are symmetrical, but the coefficients of the stiff-
ness matrix and that of dual method pseudostiffness matrix can differ in magnitude. This aspect will be explained
further in the next section.
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Illustrative Example 17: Cantilevered Beam

Integrated force Method.—The IFM solution procedure is further illustrated by considering two simple
examples. The first is a cantilevered beam idealized by two membrane elements. For the example, all matrices and
equations required for IFM and IFMD analysis are generated in closed form. Also, results from the stiffness method
and MSC/NASTRAN codes are obtained and compared. The second cantilevered truss example also is solved in
closed form.

The cantilevered beam shown in figure 4.8 is 12-in. long, 2-in. deep, and 0.25-in. thick. It is made of steel with a
Young’s modulus E of 30 000 ksi and a Poisson’s ratio v of 0.3. For static analysis, it is subjected to a tip load of
10 Ib at the free end. For dynamic analysis, the beam is considered massless with two lumped masses at its free end
as shown in figure 4.8. Because closed-form analysis is used, a very simple four-node rectangular membrane element
with five internal force unknowns, designated element IFMRC0405 (IFM rectangular four-node element with dof = 8
and fof = 5), is used. The problem is sotved via the following methods:

(1) Integrated Force Method

(2) Dual Integrated Force Method

(3) Regular stiffness method

(4) MSC/NASTRAN stiffness method

0.25in.
vITs T 4 ¢ 0.00388 slugs (5-1b mass)
2ind
Cross 1 » 2 3 ¢ 0.00388 slugs (5-Ib mass)
section 12in. —
z

Figure 4.8.- Cantilevered beam idealized by two membrane elements (IFMRC0405).

Generation of the element equilibrium and the flexibility matrices required by IFM/IFMD analysis are as
follows.

Elemental equilibrium matrix [B¢]: The elemental equilibrium matrix is obtained by discretizing the strain
energy for the membrane, which can be written as

ou ov ou v
U = [ N, S5+ Ny 2t Ny | S22 e d 455
S{"ax ¥ 3y W(ay ax)} g *3)
where
u, v membrane displacements
Ny, Ny, Ny membrane forces
X,y Cartesian coordinates in domain S

The rectangular element with spans 2a and 2b and thickness # is shown in figure 4.9.
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_LL1 2

Figure 4.9.- Rectangular membrane element IFMRC0405.

Displacement interpolations for the element are as follows:

T R 3 o 0 o O
T T O O U

where X, X,, . .., Xg are the eight displacement degrees of freedom of the element. The force interpolation selected
has the following form:

Ny=FR+FR2
b
x
Ny = F3 + F4 —
a
ny =Fs (4.57)
where F 1» Fos - .., Fg are the five force degrees of freedom.

The displacement function given by equation (4.56) represents a standard interpolation for a four-node mem-
brane element. The membrane force interpolation given by equation (4.57) represents a constant shear (ny) and a
linear variation for normal forces (V,, Ny) along the y- and x-directions, respectively. The force interpolation will
produce an acceptable stress distribution at the center of the element.

Substitution of equations (4.56) and (4.57) into equation (4.14) and integration yields the following (8 x 5)

nonsymmetrical, equilibrium matrix [B¢] for the element:

b b3 0 0 -a]
0O 0 -a al3 -b
b -b/3 0 0 -a

[Be]z 0 0 -a -al3 b (458)

b b/3 0 0 a
0 0 a al3 b

b -b/3 0 0 a

0 0 a -al3 -b |
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Elemental flexibility matrix [G¢]: The elemental flexibility matrix is obtained by discretizing the complementary
strain energy, which has the following form:

D e |

Substitution of the force polynomials (N, Ny, ny) from equation (4.57) into the complementary energy expres-
sion and integration yields the symmetrical flexibility matrix [G¢], as follows:

1 0 —v 0 0
0 1/3 0 0 0
[Ge] = (ﬂ) v 1 0 0 (4.60)
Er
0 0 1/3 0
0 0 0 0 231+v)

where E is the Young’s modulus and v is the Poisson’s ratio.

System equilibrium equations: The equilibrium equations for the two-element cantilever beam are generated by
following standard REC04 assembly procedure. The force and displacement degrees of freedom for the two elements
are depicted in figure 4.10. The system equilibrium matrix [B] of dimension (8 x 10), which is assembled from the
two elemental matrices is as follows:

— Element 1 - Element 2 -

1 -1/3 0 0 -3!-1 1/3 0 0 -3

o 0 -3 -1 1i0 0 -3 1 -l

o 0o o0 o0 ol1l -1/3 0 0 -3
a- |0 © o 0 010 0 -3 -l »
[£]= 0 0 o 0 031 13 0 0 3 (4.61)

o 0o o0 0 o0!0 0 3 1

1 1/3 0 0 31-1 -1/3 0 0 3

o o 3 1 1i0 0 3 -1 -1

The number of entries in any column corresponds to the entries in one elemental equilibrium matrix irrespective of
the problem size. Thus, the system equilibrium matrix is a very sparse matrix.

e & . pe

X3

(Fq, F2, ..., F5) (Fg. F7. ..., F10)

X
Element 1 Element 2

Figure 4.10.- Elemental equilibrium matrices.
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Compatibility matrix: The compatibility matrix is obtained from the deformation displacement relations
(B} = [(B17{X}). In the DDR, 10 deformations (which correspond to the 10 force variables) are expressed in terms
of eight displacements (X;, X, . . ., Xg). The problem has two CC that are obtained by eliminating the eight displace-
ments from the 10 DDR as

00 -1/3 1 0 0 O 0 00
[C]= (4.62)
00 2/3 0000 -1/73 1 0
Like the [B] matrix, this (2 x 10) compatibility matrix [C] is also sparse.
Flexibility matrix: The flexibility matrix for the problem is obtained by diagonal concatenation of the two
elemental flexibility matrices as
[G],
[G]=
[cl,
where
[ 1 0 -03 0 0
0 /73 0 0 0
[G], =[G], =16x10™°|-03 0 1 0 0 (4.63)

The governing equations, [S]{ F'} = {P}, of the IFM (which can be obtained from the equilibrium matrix [B], compat-
ibility matrix [C], and flexibility matrix [G]) have the following form:

1 -1/3 0 0 -3|-1 1/3 0 0 -=37AR 0
0 0 -3 -1 1| o 0 -3 1 -1 ||F 0
0 0 0 o o 1 -1/3 0 0 3| FR 0
0 0 0 o ol o0 0 -3 -1 1 || Fy 0
0 0 0 o o1 1/3 0 0 3 || F 0
= (4.64)
0 0 0 0 ol o 0 3 1 1| F{ -5
1 1/3 0 0 3 |-1 -1/3 0 0 3 || F 0
0 0 3 1 1] o0 0 3 -1 -1 {|RK]| |-5
16 0 - 533 533 0| 0 0 0 0 0 |lFR 0
-32 0 1066 0 0| 16 0 -533 533 0 ||F 0
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The first eight rows represent the EE, and the last two rows represent the CC. The last two CC rows are normalized
by a factor of 1077, Solution of equation (4.64) yields the forces:

F 0
Fy | [135
F; 0
Fy 0
Fs| |-5
- (4.65)
Fe 0
F 45
Fy 0
Fo 0
Fol |-5

From the forces, stresses can be generated from equation (4.57). For the second element, the stress components that
are accurate at the center of the element are as follows:

N

O, =—% =540 psi
N, )

Cy=—F= 0 psi (4.66)
N

Txy :—:—y-:—ZO psi

The shear stress at T, =20 psi agrees with the average shear stress calculated from the strength of materials
formula (T = P/A = 10/[2(0.25)] = 20 psi). There is no stress in the transverse direction (oy =0), which agrees with
the strength of materials results.

In contrast to the strength of materials results of 720 psi, the normal stress is 540 psi. The discrepancy occurs
because 0, (or N, in eq. (4.57)) is uniform along the length of the element with the origin at its centroid (see fig.
4.11). At the elemental centroid, the strength of materials stress value at 540 psi is identical to that of the IFM
solution. The element with five force unknowns given here to illustrate the IFM analysis procedure is a very simple
element. This element should not be used for accurate stress analysis. Even for this element, the normal stress distri-
bution can be improved by using a smaller element at the origin. For example when a smaller first element with a
reduced length of 1 in. and an 11-in.-long second element are used to discretize the structure (as shown in fig. 4.12),
the normal stress value improved to 6, = 690 psi, which is 96-percent accurate.

The displacements can be obtained via back-substitution in the formulas ({X} = [JIIG1{F}). The maximum
value of the displacement, which occurs at node 5 or 6 along the y-direction, is

8 max =—1100x1073 in. (4.67)

8 beam solution = —1-152 % 1073 in. (4.68)

The displacements calculated with the two-element regular model are about 96-percent accurate, whereas the normal

stress is 75-percent accurate. When the irregular model given in figure 4.12 was used, the stress was 96-percent accu-
rate, whereas the accuracy achieved for displacement was only 86 percent with the maximum value for displacement

(SirregulaI =0.919x10-3 in.). In other words, accurate displacement does not necessarily translate into a corresponding
level of accuracy in the stresses.
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—»| 540 |j-—

4°x
y—*»

— Element 1
]

Element 2

! |
|

—-{1in. | 11in: >

Figure 4.12.- Irregular model.

540 psi

—| Oy

6in.—

| e
|

Figure 4.11.- Normal stress distribution in
pounds per square inch for element 2.

Dual Integrated Force Method.—The pseudostiffness matrix of the dual method is obtained by using the two-
element model given in figure 4.8 following the procedure for the fixed bar in example 17. The system equation of
IFMD has the following form:

(61 00 13 —0.1 -2.6 -13 34 0.0][X; 0
16.6 01 4.0 -13 -4.5 0.0 -156|(X, 0
30 -13 -17 0.1 -2.6 13| X3 0
6 83 0.1 -7.8 L3 —4.511 Xy 0
10 = (4.69)
3.0 13 L3 —0.1 || X5 0
83 0.1 40| Xg -5
sym 6.1 0.0 [X5 0
] 16.6 | | X3 -5
Solution of equation (4.69) yields the nodal displacements as
~-1.080
—3344
—-1.440
{X} g =107 lll:ggi (4.70)
—-11.008
1.080
-3344 |

The displacements obtained by IFMD are identical to those obtained by IFM, with the maximum value at
1.1x1073 in., which is identical to that for the IFM solution.

Stress calculation in IFMD.—In the dual method, the 10-component force vector { F'}, which is back-calculated
from the formula given by equation (4.42), {F} = [GI'[BIT{X}, is identical to that obtained for IFM (see eq. (4.65)).
From forces, stresses that can be computed as indicated for the IFM become identical to IFM results. In brief, both
IFM and IFMD yield identical results for stresses and displacements, as expected.
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Regular stiffness method.—The regular stiffness matrix for the rectangular element is obtained by discretizing
the strain energy (Up) given by equation (4.71) for the displacement functions (u, v) given by equation (4.56).

2 2 - u 2
el CRD Rt b

Using the standard stiffness procedure, one can obtain the equations for the two-element cantilever beam as

(76 00 05 -01 -19 -13 -48 0.01( X, 0
171 041 38 -13 43 0.0 -l61{|X, 0
3.8 -13 24 01 -19 13| X3 0
6 86 01 -81 13 43| X, 0
10 = (4.72)
38 13 05 -01]|X; 0
86 01 38 || Xg =5
sym 7.6 00| X7 0
| 171 | Xg -5
Solution of equation (4.72) yields the displacement vector as follows:
—0.237
—0.815
-0.316
-2.576
{X}stiffness = 10_4 0316 (4.73)
-2.576
0.237
-0.815§.

The maximum value of displacement (3, = ~2.576x10™%) is much smaller, and it is only 22 percent of that of the
strength of materials solution.
For the irregular model shown in figure 4.12, the following displacement solution is obtained:

-0.193
~0.114
—-0.287
-2.944
{X}irregular = 10_4 0.287 (4.74)
—2.944

0193

-0114).

For the irregular model, maximum displacement (6, =~2.944) is sli ghtly better than the regular model and it is
25.6 percent of that of the strength of materials solution. Stresses obtained from the stiffness method for the two
crude elements are very inaccurate.
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MSC/NASTRAN stiffness solution.—The MSC/NASTRAN solution to the cantilevered beam problem is
obtained with the CQUAD-4 element. This popular element is an advanced element in comparison to the simple
IFM element RC0405. The final MSC/NASTRAN stiffness equation for the problem has the following form:

61 00 12 -01 -26 -13 -34 0.01(X; 0
169 0.1 38 -13 43 00 -160|[X;, 0
30 -13 -1.7 01 =26 13| X3 0
6 84 01 -80 13 —43]|X, 0
10 (4.75)
3.0 1.3 12 01| X5 0
sym 84 0l 3.8 (| Xg =5
6.1 0.0 ([ X7 0
] 169 || X3 -5
MSC/NASTRAN displacement for the problem obtained from solution of its equation is as follows:
—0.983
-3.052
-1310
—10.036
-4
X =10 4.76
{X}Mmsc/NASTRAN 1310 4.76)
-10.036
0.983
-3.052 in.

The maximum stress generated by MSC/NASTRAN, which occurs for the element 1 centroid, is 6, = 540 psi. The

maximum value for displacement (3, = —0.10036x1073 in.) is 87 percent of the strength of materials solution.

The MSC/NASTRAN solutions for the two-element irregular model shown in figure 4.12 are as follows. The
displacement solution is

-0.209
-0.122
-1310
-8.671

1310
-8.671

0.209
-0.122

_1n—4
{X}irregula.r =10 4.77)

The maximum displacement is 72.8 percent of the strength of materials result. Stress for the model is 97.9 percent
accurate, which is identical to that of the IFM/IFMD solution.

IFM frequency analysis.—The IFM frequency equation {[S] 0’ [([M 171G/ O]}F = 0 for the cantilever
beam depicted in figure 4.8 has the following explicit form:
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The IFM eigenvalue problem for the beam is an unsymmetrical (10 x 10) set of equations. The four nonzero
rows in the mass matrix represent the participation of the lumped masses located at nodes 3 and 4. Participation of all
10 force degrees of freedom is essential for the determination of correct frequency and force mode shapes (refs. 6, 9,
and 29). A correct dynamic analysis formulation cannot be obtained through any elaborate manipulation of the equa-
tions of the classical force method (ref. 20), because this approach cannot consider the mass or the inertia for redun-
dant members. The four frequencies obtained for the problem are given in table II. Table III shows the fundamental

force mode shape along with the displacement mode shape calculated by back-substitution with equation (4.2).

TABLE I1.—FREQUENCIES FOR A CANTILEVERED BEAM WITH LUMPED MASS

Frequency Frequencies, Hz
numbers
Analytical IFM TFMD Stiffness MSC/NASTRAN
solution method QUAD-4 element
1 168.32 170.629 170.629 353.073 178.707
2 1052.00 | 2031.261 | 2031.261 2032.188 2031.922
3 2950.38 | 2534.278 | 2534.278 4874.846 2647.656
4 5786.00 | 9298.475 | 9298.475 9599.293 9510.976

TABLE Iil. —FORCE-AND DISPLACEMENT-MODE SHAPES FOR FUNDAMENTAL
FREQUENCY OF CANTILEVERED EEAM

IFM IFMD Stiffness MSC/NASTRAN
method® QUAD-4 element
Force mode | Displacement Force mode | Displacement | Displacement Displacement
shape mode shape shape mode shape mode shape mode shape
0.0 9.78x107 0.0 9.78x107° 9.17x107 9.8x10™
1.0 303 1.0 0.303 0.315 303
0.0 131 0.0 131 123 131
00 1 10 0.0 1.0 1.0 1.000
-3.65x10"™ -.131 -3.65x107" -.131 -123 -.131
0.0 1.0 0.0 1.0 1.0 1.000
0343 ~9.78x107> 0.343 —9.78x107> | -9.18x107 ~9.78x10™
0.0 303 0.0 303 315 303
00 | 0.0
Y Al Iy — -3.65x10

Force mode shape could not be determined.

IFMD frequency analysis.—The IFMD frequency equation, neglecting damping, ([D] —coz[M ]))_(- =0 for the
two-element cantilevered beam depicted in figure 4.5, has the following explicit form:

61 00 13
166 - 01
3.0
108
sym

~-01 -26 -13
40 13 -45
-13 -17 =01
83 01 -78
30 13

&3

=34
0.0
-2.6
13
13
0.1
6.1

0.0
-15.6
13
—4.5 )
—w?x1073
-0.1
4.0

0.0

16.6 |

X=0

4.79)

There are eight equations for the dual method. The four nonzero entries in the diagonal mass matrix in equation
(4.79) correspond to the lumped masses. The structure of the IFMD eigenvalue equation appears similar to standard
stiffness equations. (The differences between IFMD and the stiffness equations are examined later.) The frequencies
obtained by IFMD are given in table II. The fundamental displacement mode shape along with the force mode back-
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calculated from equation (4.5) are shown in table III.

The IFM equations are unsymmetrical, whereas those for IFMD are symmetrical. Either set of equations can be
used to obtain frequency, stress, and displacement mode shapes. The symmetrical form can use popular eigenvalue
solution routines (such as DSPGV), which are readily available in the LAPACK public domain library (ref. 36). For
unsymmetrical eigenvalue analysis, the LAPACK routine DGEGYV is used (ref. 36). For static analysis, Harwell
library routines (MA28AD, MA28CD, MA29BD, MA29CD, MA47AD, MA47BD, MA47CD, MA47ID) are used
(ref. 40). However, the unsymmetrical IFM version can be more useful than IFMD in design and sensitivity analysis
(ref. 22). Furthermore, the IFM solution that provides r = n — m number of zero frequencies and associated eigenvec-
tors corresponding to the r number of compatibility conditions can be used to verify solution accuracy.

Stiffness method frequency analysis.—The stiffness method frequency equations ([K ]—(oz[M]jlf =0 for the
cantilever beam depicted in figure 4.8 have the following explicit form:

76 00 05 01 -19 -13 —48  00] 0
171 01 38 -14 —43 00 -161 0
38 -13 24 -01 -19 13 4
86 01 -81 13 -43 4
10° —®?x1073 (X}=0 (4.80)
38 13 05 01 4
86 01 38 4

sym 7.6 0.0 0

L 17.1 | | 0]

Frequency and displacement modes obtained are presented in tables II and III. Stress mode shapes cannot be calcu-

lated readily in the stiffness method.
MSC/NASTRAN frequency analysis.—MSC/NASTRAN equations for a two-element beam with a CQUAD4

element and appropriate condensation have the following form:

Tables If and II give the MSC/NASTRAN results for the problem.
This discussion is centered around the fundamental frequency because other frequencies are expected to be
inaccurate and thus observed (see table II) because of the two-element crude model. IFM and IFMD yield identical
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(62 00 12 -01 26 -13 -34  0.0] 0
170 01 39 -13 —44 00 -160 0
31 -13 -17 -01 -26 13 3.9
85 01 -80 13 44| 3.9
10° ~w?x107? {X}=0
31 13 12 -0l 39
sym 85 01 39 3.9
62 00
i 17.0
) (4.81)



frequencies at 170.6 Hz, which is about I percent higher than the beam solution of 168.3 Hz. The stiffness method
yields a very high frequency at 353 Hz or about twice that of the beam solution. The MSC/NASTRAN QUAD-4
element produces a frequency of 178.7 Hz, which is 6.2 percent higher than that produced by the beam solution.

Only IFM and IFMD provide force mode shapes that are identical, as expected. Displacement modes generated
by all four methods (IFM, IFMD, stiffness, and MSC/NASTRAN) agree quite well.

Illustrative Example 18: Single-Bay Truss

A square aluminum truss with a length of 20 in. and a Young’s modulus E of 10x108 psi is depicted in figure
4.13. The areas of both diagonal bars are equal to J2 /2in2; all other bars have an area of 1in? The solution is
required for two load cases. Load case 1 consists of a mechanical load of 1000 Ib at node 1 along the y-direction as
shown in figure 4.13. Load case 2 consists of an elevated temperature (AT = 100 °C) for member 3, which has a coef-
ficient of thermal expansion o of 6x107° per °F. The problem was solved separately for mechanical and thermal
loads (see Illustrative Example 11). A solution for both thermal and mechanical loads can be obtained by
superpositioning the two solutions.

Solution for mechanical loads: Both mechanical and thermal loads require the same EE, which are assembled
from the six elemerital matrices to obtain four EE ([B]{F} = {P}). The equilibrium matrix ([B]) for the ith bar
element with internal force (F;) and direction cosines (¢, m) can be written (see eq. 4.36) as

—~f
—-m
[Bli=| , | & (4.82)
m .
1
The EE for the six bars are as follows
dof 4
0f -1 0] -1/2 1 0
0| 0 0|-1/2 21 1
Bl =,| | |A BL=\" 5 |2 =3 o |B
200 21 1/42 4| -1
£=] f=m= =0
m=0 U2 m=—1
0| -1/2 or-1 ol 0
0| 1/42 ol 0 ol 1
[Bli=3| |,z | [Bls =, , |5 [Bls =, o |Ts (483)
4 -1/2 4| 0 0| -1
£=1/2 t=1 =0
m=—1/42 m=0 m=—1

The assembly of the elemental EE matrices along the displacements (X}, X,, X3, X,,) yields the following EE:
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F
118 0o 0 0 0]R 0
0 1/2 1 0 0 0| F 1000
= (4.34)
0 0 0 1/jZ 1 0||F 0
0 0 -1 -1/Z 0 Of|Fs 0
g

The sixth column is null because the sixth bar (Fy) is connected to fully restrained nodes 3 and 4, as shown in figure
4.13. In IFM, null columns are accepted in the equilibrium equations of indeterminate structures without any adverse
effects.

Compatibility conditions: The six forces are expressed in terms of four EE, thus there are two CC. The CC are
obtained first by writing the six DDR and then by eliminating the four displacements {X} from the DDR. The DDR
({B} = [BI{X}) for the problem can be written as

X3—-X,4
= X = —
Br=X Ba 5
X] + X2
= ——— =X
B2 7 Bs = X3
By =X X4 B =0 (4.85)
Elimination of the four displacements (X, X,, . . ., X,) from the six DDR yields the two compatibility conditions in
six deformations:
By
B2
0 0 0 0 0 1 Bs| _ 0 4.86)
1 22 1 22 1 0 ||Baf " '
Bs
Be
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The second CC in equation (4.83), (that is, B¢ = 0) corresponds to the sixth element, with the null sixth column in the
EE given by equation (4.80).

In the absence of temperature effect, the six deformations are related to member forces through the flexibility
coefficients as follows:

20F

173 20F 40F. 20F 40F 20F.
Blz(—lj =21 By =—2 By ="D> By=—2F Bs == BﬁzT (4.87a)
1

AE E E 3T E E

The flexibility matrix [G] from the FDR {B} = [G]{ F} can be formed from the diagonal concatenation of the flexibil-
ity coefficients as

20

40
1 20
Gl=— 4.87b
[G] 5 40 (4.87b)
20

20

Thermal effect: For the problem, temperature in member 3 is included in the deformation for that member as

B3 =5 +B3
20F.
BS =2 (asbefore)
B =aTe=12x107 and By =pJ =% =pJ =2 =0 (4.88)

The effective initial deformation vector {dR} for the temperature in member 3 can be calculated as

{or} = -[C1{p}" = {_123 10_3} (4.89)

The CC, [C][GI{F} = {6R}, are obtained in terms of forces by eliminating deformations between the CC in deforma-
tion and the FDR as

K
F2 Thermal
2010 0 0 0 0 1||F 0
f[l 22 1 2 1 0} F, :{—12><10‘3 (4.50)
Fs
Fs
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IFM governing equations ([S]{F} = {P}"): The IFM governing equation is obtained by coupling the EE and

the CC:

1 1/42 0 0 0 0|(RA
0 1/42 1 0 0 0||F
0 0 0 /42 1 0||F
0 0 -1 =1/42 0 0||F
0 0 0 0 0 1||Fs
1 2 1 =22 1 0]\F
Solving the IFM equations yields the forces as
Mechanical

£ —5455

F 7714

F 4545

F 7 -ea2s| ™

Fs 4545

Fy 00)

Mechanical Thermal .

0
1000
0

0
0
0

Thermal
~545.45

77139
—545.45
77139
—545.45

0

0
0
0
0
—6x103

Ib

Displacements back-calculated from the IFM formula ({X} = [J/I[GI{F} + {B19) are

Mechanical
X, -1.091
X 5.454
22 %107 and
X, 0.909
X4l 4.545

.
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Thermal

-1.091

5.454
-1.090
~5.454

%1073

(4.91)

4.92)

(4.93)






Appendix A
Classification of Variables and Methods

of Structural Mechanics

Structural mechanics deal with three types of variables: (1) force F, (2) displacement X, and (3) deformation .
These variables are related through four types of relations: (1) equilibrium equations (EE), (2) compatibility condi-
tions (CC), (3) force deformation relations (FDR), and (4) deformation displacement relations (DDR). The choice of
primary variables and the requisite relations form the different structural mechanics methods (see table I): (1) the
Integrated Force Method, (2) the displacement method, (3) hybrid method, and (4) total formulation. This appendix
provides a brief description of the variables and their relationships. The methods of structural mechanics can be
developed with the matrices of the equilibrium equations, compatibility conditions, and force deformation relations.

Consider the equilibrium equations, which relate internal force {F} to load { P} through the equilibrium matrix
[B], as

[BI{F}={P} (A.la)

Force {F} is considered to be the primal variable of the EE. In this report, the EE is obtained as the vectorial summa-
tion of forces {F} and loads { P}, see equation (1.2) as an example. Alternatively, it can be obtained as the stationary
condition of a potential function %€ that can be defined as

¢ =(X}7 [BIF-1x}y (P} (Alb)

The stationary condition of ¢ with respect to a certain set of variables yields the EE. The “set of variables” is re-
ferred to as the dual variables of the equilibrium equations. Displacements {X} are the dual variables of the equilib-
rium equations, or

81x)(n°)= [BIF - {P}=0 (Alc)

Forces {F} are the primal variables of the EE, whose dual variables are the displacements {X}. The concept
illustrated for the equilibrium equation can be extended to other relations. For example, deformations {3} are the
primal variables of the compatibility conditions ([C]{B} = 0), and redundants {R} are its dual variables. Likewise,
displacements {X} are the primal variables of the deformation displacement relations (B1T{x}) = {B}), whose dual
variables are the forces {F}. For the force deformation relations ([G]{ F} = {B}), forces { F'} represent both the pri-
mal and dual variables. If the primal and dual variables are identical, such as for the FDR, then only its coefficient
matrix [G] becomes a symmetrical matrix.

The IFM with force {F} as the unknown is the force method with the governing equation

[SHF}={P} (A.2a)
The IFMD with displacement {X} as the unknown becomes the displacement method with the governing equation
[DI{X}={P} (A.2b)
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The governing equations of the hybrid method with force {F} and displacement {X} as the unknowns can be written
as

S O|[F P
= (A.2¢)
-JG I||X 0

The coefficient matrix of the hybrid method is essentially uncoupled because forces can be determined first; then,
the displacements can be recovered by back-substitution as {X} = [JIIGHF}.

The governing equations of the total formulation with force {F}, displacement {X}, and deformation {B} as the
unknowns can be written as

s o O0|F (P
—JG I OfXi={0 (A2d)
-G o0 I||lp] |0

The coefficient matrix of the total formulation also can be considered to be an uncoupled matrix. All four methods
given by equation (A.2) should provide the same solution fidelity if the key EE matrix [B] and the FDR matrix [G]
are generated correctly. From known forces { F'}, displacements {X} can be back-calculated. Likewise, from dis-
placements, forces can also be recovered by back-substitution (see eq. (4.2)). Thus, traditionally, the force method,
or the IFM, and the displacement method, or the IFMD, are considered to be the two principal structural mechanics
formulations. Table I summarizes the analysis methods, their primal variables, and their associated variational
functionals.
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Appendix B
Solution Through Superposition

and Redundant Techniques

Simple indeterminate problems can be analyzed through superposition and redundant techniques. Both tech-
niques bypass the explicit use of the compatibility conditions. In these techniques, the problem is separated into
determinate subproblems that can be solved without the compatibility conditions. The solution to an indeterminate
problem is generated by adding the subproblem solutions. The redundant and the superposition techniques are illus-
trated by considering a beam as an example. A beam of length ¢is fixed at both ends and is subjected to a uniformly
distributed load of intensity g per unit length. The IFM solution for the problem was given earlier under Illustrative
Example 6.

Solution Through the Superposition Method

A uniform beam with constant rigidity ET is shown in figure B.1(a). The free-body diagram of this beam is
shown in figure B.1(b). Because of symmetry, the reactions are equal (R, = Rp) and the transverse equilibrium equa-
tion yields their values:

4
RA=RB=R=%— (B)
Likewise, because of symmetry, the fixed-end moments at support A and B are equal (M, = M), as shown in figure

B.1(b):
My=Mp=M (B2)

Analysis of the problem requires the determination of the single moment M. The superposition technique
replaces the real structure with two determinate structures, which are shown in figures B.1(c) and B.1(d). The first
structure, shown in figure B.1(c), is a determinate structure subjected to the given external load g that produces a
symmetrical rotation 6, at both support A and B. The second structure, shown in figure B.1(d), is the same determi-
nate structure, but it is subjected to moment M, producing the symmetrical deformations 0,

The key idea of the superposition technique is to generate a solution to the original indeterminate problem by
adding the two determinate solutions. For the problem, the superposition technique constrains the determinate slopes
(8, + 8, = 0) to zero to reinstate the fixed-end boundary conditions (8 = 0). The superposition method has two steps.
In the first, solutions are obtained for the two determinate subproblems shown in figures B.1(c) and B.1(d). In the
second step, the two determinate solutions are added to obtain the solution for the indeterminate problem.

Step 1—Determinate solutions: The two determinate problems depicted in figures B.1(c) and B.1(d) can be
solved from equilibrium considerations only.

Solution to first determinate subproblem.—For the problem depicted in figure B.1(c), the bending moment at a
location x can be calculated as

2

glx gx
A = B3
1(x) 2 7 (B3)
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q per unit length

AR .

(a) Beam clamped at both ends.

I I I I I | M

¢
Rg=%

(b) Free-body diagram.

g per unit length

+0++'++0++{

7\

QOO0
X i .

RN )

(c) Subproblem 1- simply-supported beam subjected to given load.

(e) Bending moment diagram.

Figure B.1.- Solution by superposition methods.
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The moment is integrated to obtain the displacement function w by using the moment curvature relation as

d2w1 7 _ 1 q_ﬂx.____qxz (B.4)
dx? El EI| 2 2 ’

Upon integration, the displacement function is obtained:

1 qbc3 qx4
= — —— 4 + B.5
" EI[ 12 24 VT2 (B5)

The two constants of integration (c,, ¢,) are calculated from the boundary conditions (see fig. B.1(c)) as

wi=0 at x=0 or c¢p=0 (B.6a)
£3
w; =0 at x={ or ¢ =—‘12—4 (B.6b)

and the displacement function has the following form:

(4 23,3
wy = (24151) (x) (2€x x3—¢ ) (B.7)
The slope or rotation at A can be obtained as
d 3
o, =24 =L (B.8)
dx | =g 24E1

Solution to second determinate subproblem.—Likewise, the second subproblem depicted in figure B.1(d) is
solved by calculation of the bending moment at a location x:

", (x)=M, ' (B.9)
The integration of the moment curvature relation yields the displacement function w as

d2W2 %z_Mr

= B.10a
dx? El EI ( )
M, x?
w2 = 1 x+d ( )
The two constants of integration (d,, d,) are calculated from the boundary conditions (see fig. B.1(d)):
wy, =0 at x=0 or dy=0
M.t
wy=0 at x={ or d =-—2= B.11
2 1 2El (B.11)
The displacement function has the following form:
Mr 2
Wy = x“—Lx B.12
2550 ( ) (B.12)
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The slope or rotation at A can be obtained as

M, 0
o, = - Ml (B13)
dxl,eo  2EI

Step 2—Superposition of determinate solutions: The bending moment M, is the only unknown of the beam, as
shown under subproblem 2 in figure B.1(d). The superposition principle adjusts the bending moment M, for subprob-
lem 2 until the induced rotation 6, matches the rotation 8; in subproblem 1, producing the fixed-end condition with
no rotation (8 = 0) for the original problem. The superposition principle can be written mathematically as

91+92 =0=0
3
or _gr Mt
24El 2EI
2
q¢ '
M =——=M B.14
r B (B.14)

The moment M obtained here is identical to the IFM solution given by eq. (3.6.15). Likewise, the reaction R
given by eq. (B.1) agrees with the shear force given by eq. (3.6.15). The bending moment diagram for the problem,
which is obtained by superposing the two subproblem solutions, is shown in figure B.1(e).

The displacement function for the problem is obtained by adding the two responses for the two subproblems:

2
q!
w=w;+w for M, =—"—
1 2 r 12
3 2.2 4
S I . S (B.5)
EIl 12 24 24

The displacement functions given by equations (B.15) and (3.6.19) for the IFM solution agree.

Solution Through the Redundant Technique

The problem is one-degree indeterminate because of symmetry (see fig. B.1(b) and eqs. (B.1 and B.2)), or it has
a single redundant force as the unknown (r = 1). In the redundant technique, a determinate basis structure is gener-
ated from the original structure by introducing as many virtual “cuts” as there are redundants. For a structure with
a single redundant, one cut is introduced at the center span to obtain the basis structure, as shown in figure B.2(a).
Normally, there should be a moment and a shear force at the cuts of the beam. From symmetry, the shear force is
zero and the cut has only a moment M, which is considered to be the unknown redundant moment. The redundant
solution method has two principal steps: (1) determination of the redundants, then (2) solution of the basis structure
subjected to the external loads and the redundants.

Step 1—Determine the redundant moment: To determine the redundant moment M, one needs to solve the
basis determinate structure twice—once for the external load, as shown in figure B.2(a), and again for the redundant
moment M, shown in figure B.2(b). The two solutions are added to restore the original continuity condition at the
cut. For this problem, because of symmetry, the continuity condition becomes zero (6 = 0) at the beam center.
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W Virtual cut

(b) Basis structure subjected to redundant moment M.

e IR LAY &)J«

(c) Determinate structure subjected to external load q and redundant moment M.

I i
1 ~N~—_— fz%

(d) Bending moment diagram.

Figure B.2.—Solution by the redundant force method.
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This conditioni s enforced as(see figs. B.2(a) and B.2(b))

0c+0p =0 =0 (B.16)

where 8- is the rotation for the external loads (fig. B.2(a)), 8, is the rotation due to the redundant moment M

(fig. B.2(b)), 8 is the rotation at the center of the real structure (0 = 0).
Calculation of rotation 0 Determination of the rotation 8 requires the integration of the moment curvature

relation. The moment 7 (x) from figure B.2(a) can be calculateda s

dw mt g . 2,
— | fx———X
a2 EI  2EI 4
q o 2kt X!
W=—| =t xt ey (B.17)
2EI\ 6 8 12

The integration constants are determined from the boundary condition at the origin:

w=0 at x=0 or c;=0

— =0 a x=0 or c=0
dx
N e S (B.18)
2FI\ 6 8 12 ’
The rotation at cut C is obtained as
bt
€T dx 2
€3
0c = ‘Zqu—E; (B.19)

Calculation of rotation 0p,: Determination of the rotation 8, requires the integration of the moment curvature
relation, which from figure B.2(b) can be written as

d*w m" M

w2 El El

x2
w= +cx+¢)
2EI

(B.20)
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The integration constants are determined from the boundary condition at the origin:

w=0 at x=0 or ¢=0

W _0 at x=0 or ¢ =0 (B21)
dx
_ Mx?
2EI
and the rotation at cut C is obtained as
Me
=" B.22
Y (B22)
The slope continuity condition (8 + 8, = 0) yields
3
- iti__ + ﬂf_ = ()
48E] 2EI
2
(B.23)

Step 2—Solution of the basis structure: The solution of the basis structure subjected to the external load ¢ and
the redundant moment M yields the solution to the original problem. Because of symmetry, only half of the basis

structure is considered, as shown in figure B.2(c).
The moment is obtained by adding ¢ and 7 " (see fig. B.2(c)) as

2 2
T A L (B.24)

The moment diagram for the beam obtained from the determinate structure shown in figure B.2(c) is depicted in
figure B.2(d). Careful examination will confirm that the moment diagrams given in figure B.1(e), which were
obtained from the superposition solution, and the diagrams given in figure B.2(d), which were obtained from the

redundant solution, are equivalent.
Calculation of displacement: The displacement function can be determined by integrating the moment curvature

relationship (see fig. B.2(d)) as
dw_m_ ) (gt gtx_ax?
dx® EI EI{ 12 2 2

2.2 3 4
or we 4| X X xve (B.25)
24 12 24
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The boundary conditions (w = 0 and dw/dx = 0) at A (x = 0) yield the value of the constants (c; = ¢, = 0). The

displacement function becomes
2.2 3 4
q (_ x JX__L] (B.26)

W= =
EJ 24 12 24

Both the superposition solution and the redundant solution solved this simple problem. Extension of the methods
for the general solution of problems becomes cumbersome, especially when computers are used. Both methods are
difficult to use in the dynamic analysis of structures. Even though the methods were favored during the manual calcu-
lation era, they are currently out of favor.
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Appendix C
Standard Strength of Materials Formulas

Elementary structural analysis typically provides the solution for axial force, shear force, bending moment, and
torque. The stress and strain induced in a beam because of these forces can be calculated through the use of standard

strength of materials formulas. These formulas, which are derived in standard strength of materials textbooks, are
summarized here.

Axial Force

The stress o due to a force F in a uniform bar with cross-sectional area A can be determined as

F
0= Z (C1)

The strain € due to the stress ¢ can be calculated from Hooke’s law of the material and the Young’s modulus of
elasticity E as

(C2)

For an axial member we can write

o=Ee=— (C3)

The stress and strain distribution for a uniform bar of depth d, thickness b, and area A (A = b d) is illustrated in
figure C.1.

Y y
_ fa— Ee—]
T 1 —
. ]
d I— - -——»z ——] — - )
F —
X =
|<——b—>] |<—— O—»
(a) Cross section (b) Stress distribution.

Figure C.1.- Stress and strain due to axial force.
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Shear Force

The shear stress T in a uniform beam due to a shear force V can be determined as

Vo |4
T= —;‘t‘ Tmax = 15-; (C.4)

A area

b thickness of the beam

I moment of inertia

Q first moment of the area with respect to the neutral axis

In the shear stress formula given by equation (C.4), the shear stress has a parabolic distribution along the depth
about the neutral axis (or the x-axis in fig. C.2) because the first moment of the area is a function of the y-axis. The
shear stress has the maximum value 1 = 1.5 (V/A) at the neutral axis.

The shear strain y due to the shear stress T can be calculated from Hooke’s law of the material and the shear

modulus G, where G = E/[2(1+ V)], as

=— CS5
Y G (C.5)
The shear stress and shear strain distribution for a rectangular uniform bar of depth d, thickness b, and area A, where
A = bd, is illustrated in figure C.2.

Bending Moment

The bending stress ¢ in a uniform beam that is oriented along the x-axis has a linear distribution along the
y-axis, as shown in figure C.3. The bending stress at the distance 3 from the neutral axis can be calculated from the
following formula:

My c
o=22 e=— (C.6)
I E
where G is the stress along the beam depth at a location y from the neutral axis and € is the strain associated with the
stress G.

The bending stress is zero at the neutral (or x) axis, and it peaks at the extreme fibers of the beam as shown in

figure C.3.

Torque

The shear stress T in a uniform shaft that is oriented along the x-axis has a linear distribution along the y-axis, as
shown in figure C.4. The shear stress T and strain v at the distance r from the neutral axis can be calculated from the
following formula:

Tr T
T=— =— (€7D
J ! G
where J (J =0.5 nR4) is the polar moment of inertia of the circular cross section with radius R, and 7 is the distance
from the neutral axis, as shown in figure C.4.
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(a) Cross section (b) Stress distribution.

Figure C.2.- Shear stress and shear strain due to shear force.
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Cross section
Figure C.3.- Shear distribution due to bending moment.
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\
Cross section Torque T Shear stress

Figure C.4.- Shear stress distribution due to torque.
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Appendix D
Sign Conventions

Sign Conventions for Variables

Uniform sign conventions are useful in solving structural analysis problems. This appendix summarizes the sign
conventions that are followed in this report. However, one can analyze these problems without following the sign
conventions given in this appendix. Consistent sign conventions are sufficient for the solution of structural mechanics
problems.

The sign conventions are illustrated for common structural mechanics force and displacement variables—such as
the normal force F, shear force V, bending moment M, and torque T—and the associated displacements—the axial
displacement u, transverse displacement v, angle of flexural rotation 6, and angle of twist ¢. A Cartesian coordinate
system with the origin 0 and with x, y, and z as the axes (as depicted in fig. D.1(a)) is used to define the sign conven-
tions.

Axial force, also referred to as the normal force F is considered to be positive along the positive direction. For a
beam oriented along the x-axis, the axial force F is positive when it is directed along the positive x-axis, as shown in
figure D.1(a). The axial displacement u is considered to be positive along the positive x-direction. In other words,
both the axial force and the axial displacements are positive along the positive x-axis.

Likewise, the shear force V and transverse displacement v are considered to be positive along the positive direc-
tion. For a beam oriented along the x-axis, the shear force and transverse displacements are positive along the posi-
tive y-axis, as shown in figure D.1(b).

The bending moment and torque, along with the associated displacements (8, ¢) are considered to be positive
along their vectorial directions. For a beam oriented along the x-axis, the moment M is positive when the moment
vector is directed along the positive z-axis, as shown in figure D.1(c). The rotation 0, which follows the sign conven-
tion for the moment M, is positive when the rotational vector is directed along the z-axis.

For a beam oriented along the x-axis, the torque T is positive when the torque vector is directed along the posi-
tive x-axis, as shown in figure D.1(d). The angle of twist ¢, which follows the sign convention for the torque 7, is
positive when the angle of twist vector is directed along the x-axis.

In the solution of problems utilizing conditions of symmetry, it can be advantageous to select the beam (or X )
axis directed from right to left, as shown in figure D.1(e). The other two axes (¥, 7 ) are selected according to Carte-
sian conventions, as depicted in figure D.1(e). After the X -, and 7 -axes are defined, the positive directions for forces
and displacements follow the earlier conventions.

For example, for a beam oriented along the positive X -axis, the moment M is considered to be positive when the
vector is directed along the Z -axis. On the beam, the moment takes a clockwise direction (see fig. D.1(e)), which is
opposite to that shown in figure D.1(c). Likewise, the sign for torque is shown in figure D.1(f). Readers can avoid
confusion by following consistent conventions—that is, by considering a force (or a displacement) variable to be
positive when it is directed along the positive axis, and by remembering the vectorial directions for moment and
torque.

Typically, structural problems deal with gravity load (P,), which is directed along the negative y-axis. However,
displacement (Xy) is considered to be positive along the y-axis. The convention results in a negative work term,

W= —Py X

Traditionally, in the solution of elementary structural mechanics problems, a free-body diagram with specified
signs for forces, moments, and torque is employed. Upon solution, the positive value for the force variable confirms
the specified sign, whereas the negative value requires the opposite of the assumed sign. Displacements, rotations,
and angles of twist follow the sign convention for force, moment, and torque, respectively.
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z
(a) Axial force (F) is positive when directed along the positive x-axis.

y

Vand v

————- X

z
(b) Shear force (V) is positive when directed along the positive y-axis.

y.

z
(c) Bending moment (M) is positive when directed along the positive z-axis.

y

z
(d) Torsional moment (7) is positive when directed along the positive x-axis.

{f) Torsional moment (7) is positive when directed along the positive x-axis.

Figure D.1.- Sign conventions for force, moment, and torque.
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Sign Conventions for Equilibrium Equations

In the equilibrium equations ([B]{ F} = {P}), aligning the load vector { P} along the positive axes will produce
the displacement vector {X} along the positive axes. As an illustration of the sign convention for the equilibrium
equations, consider a beam with a load P at the center span as shown in figure D.2(a). The transverse EE along the
positive y-direction can be written as

—R,-Rp=-P

Likewise, the moment EE at A along the positive z-axis can be written as

Pe
—Rpl = —me
B 2

In matrix notation, the two EE can be written as

-1 =17(R4 -P
=q—-P¢ (D.1)
0 —2{|Rp BN
In the EE given by equation D.1, the load component (-P) is along the positive y-axis and the moment vector (—P¢/2)
is directed along the positive z-axis. If there is confusion in the sign convention for the equilibrium equations, the

(a) Gravity load P.
,ﬁr’"o

c

(b) Fictitious moment, my.

Figure D.2.- Sign conventions for equilibrium equations.
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following technique can be used. Apply a fictitious force or moment along the positive axis. For example, for
moment EE, a fictitious moment m;, should be applied as shown in figure 3.2(b). The moment EE at A can be
written as

—-RszmO —f;

Then, set the fictitious moment to zero (mg = 0) to obtain the EE written in the positive direction as
—Rpl=-——
B 2

This technique also can be used to write other equilibrium equations.
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Appendix E
Important Symbols

The following symbols are used in this report.

[B]
Bzl
[C]
[D]
dof

fof
[G]

Hy, ()

cross-sectional area

equilibrium matrix

equilibrium matrix to back-calculate reactions
compatibility matrix

dual matrix of IFMD

displacement degrees of freedom
Young’s modulus

axial, or normal, force

force degrees of freedom
symmetrical flexibility matrix
flexibility coefficient

Hermite polynomials

plate thickness

moment and polar moment of inertia
internal energy

deformation coefficient matrix
stiffness matrix

length parameter

moment

moment function as 74x)
plate-bending moments

number of displacement variables or equilibrium equations
number of force variables

external load

load intensity

reaction
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[s1

AT

u,v,w

Mo o<

X, ¥, 2

OR

m

a @ A © =

CcC
DDR
EE

IFM
IFMD

degree of indeterminacy

IFM governing matrix

torque; as a superscript represents transpose operation
temperature variation

strain energy

complementary energy
displacement components

shear force

work done by external loads
displacements

amount of support settling
Cartesian coordinates
coefficient of thermal expansion
effective initial deformation
normal strain

shear strain

angle of twist

curvature

rotation

normal stress

shear stress

Acronyms and Initialisms

compatibility condition
deformation displacement relation
equilibrium equation

force deformation relation
Integrated Force Method

Dual Integrated force Method

NASA/TP—2004-207430 166



References

Historical Background

1. Galilei, G.: Dialogues Concerning Two New Sciences. Northwestern University Press, Evanston, Illinois, 1950.

2. Timoshenko, S.: Strength of Materials. D. Van Nostrand Company, Inc., New York, 1930.

3. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (England), 1927.

4. Todhunter, 1.: A History of the Theory of Elasticity and of the Strength of Materials, From Galilei to the Present Time. Cambridge
University Press, Cambridge (England), 1886-1893.

Integrated Force Method—Basic Theory

5. Pamaik, §.N.; and Hopkins, D.A.: Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis.
Advances Engrg. Software, vol. 29, no. 3-6, 1998, pp. 463-474.

6. Patnaik, S.N.; Berke, L.; and Gallagher, R.H.: Compatibility Conditions of Structural Mechanics for Finite Element Analysis. AIAA J.,
(Also NASA TM-102413), vol. 29, May 1991, pp. 820-829.

7. Nagabhusanam, J.; and Patnaik, S.N.: General Purpose Program to Generate Compatibility Matrix in the Integrated Force Method. AIAA J.,
vol. 28, Oct. 1990, pp. 1838-1842.

8. Patnaik, S.N.: The Variational Energy Formulation for the Integrated Force Method. AIAA 1., vol. 24, no. 2, 1986, pp. 129-137.

9. Patnaik, S.N.; and Joseph, K.T.: Generation of the Compatibility Matrix in the Integrated Force Method. Comp. Meth. Appl. Mech. Eng.,
vol. 55, no. 3, May 1986, pp. 239-257.

10. Pamaik, S.N.; and Joseph, K.T.: Compatibility Conditions From Deformation Displacement Relationship. ATAA J., vol. 23, Aug. 1985,
pp- 1291-1293.

Integrated Force Method—Design Optimization

11. Patnaik, S.N.; Gendy, A.S.; Berke, L.; and Hopkins, D.A.: Modified Fully Utilized Design (MFUD) Method for Stress and Displacement
Constraints. Int. J. Numer. Methods Engrg., vol. 41, 1998, pp. 1171-1194,

12. Patnaik, S.N.; Hopkins, D.A.; and Coroneos, R.: Structural Optimization With Approximate Sensitivities. Comput. Struct., vol.
58, no. 2, 1996, pp. 407-418 (NASA TM—4553).

13. Patnaik, S.N.: Analytical Initial Design for Structural Optimization via the Integrated Force Method. Comput. Struct., vol. 33, no.
1, 1989, pp. 265-268.

14. Patnaik, S.N.: Behaviour of Trusses With Stress and Displacement Constraints. Comput. Struct., vol. 22, no. 4, 1986, pp. 619—
623.

15. Patnaik, S.N.; and Gallagher, R.H.: Gradients of Behaviour Constraints and Reanalysis via the Integrated Force Method. Int. J.
Numer. Meth. Engrg., vol. 23, 1986, pp. 2205-2212.

16. Patnaik, S.N.; and Yadagiri, S.: Design for Frequency by the Integrated Force Method. Comput. Methods Appl. Mech. Engrg.,
vol. 16, no. 2, 1978, pp. 213-230.

17. Patnaik, S.N.; and Dayaratnam, P.: Behaviour and Design of Pin-Connected Structures. Int. J. Numer. Methods Engrg., vol. 2,
1970, pp. 579-595.

18. Dayaratnam, P.; and Patnaik, S.N.: Feasibility of Full Stress Design. AIAA J., vol. 7, 1969, pp. 773-774.

Integrated Force Method—Elasticity

19. Pamaik, S.N.; Kaljevic, 1.; Hopkins, D.A., and Saigal, S.: Completed Beltrami-Michell Formulation for Analyzing Mixed Bound-
ary Value Problems in Elasticity. AIAA J. (NASA TM-106809), vol. 34, no. 1, 1996, pp. 143-148.

20. Patnaik, S.N.; and Satish, H.G.: Analysis of Continuum Using the Boundary Compatibility Conditions of Integrated Force Method. Comput.
Struct., vol. 34, no. 2, 1990, pp. 287-295.

21. Vijayakumar, K., Krishna Murty, A.V_, and Patnaik, S.N.: A Basis for the Analysis of Solid Continua Using the Integrated Force Method.
AIAA ], vol. 26, no. 15, 1988, pp. 628-629.

22. Patnaik, S.N; and Nagaraj, M.S.: Analysis of Continuum by the Integrated Force Method. Comput. Struct., vol. 26, no. 6, 1987, pp. 899—
905.

NASA/TP—2004-207430 167



23.

24.

25.

26.

27.

28.

29.

30

33

35

38
39

Integrated Force Method—Finite Element Analysis

Hopkins, D.A; Kaljevic, 1.; and Patnaik, S.N.: Constructing Finite Elements for the Integrated Force Method. NASA Tech Briefs,
vol. 21, no. 7, 1997, pp. 70-72.

Kaljevic, L; Patnaik, S.N.; and Hopkins, D.A.: Treatment of Initial Deformations in the Integrated Force Method. Comput. Meth. Appl.
Mech. Eng., vol. 140, nos. 3-4, 1997, pp. 281-289.

Patnaik, S.N.; Coroneos, R.M.; and Hopkins, D.A.: Dynamic Animation of Stress Modes via the Integrated Force Method of Structural
Analysis. Int. J. Num. Meth. Engrg. vol. 40, 1997, pp. 2151-2169.

Kaljevic, L.; Patnaik, S.N.; and Hopkins, D.A.: Development of Finite Elements for Two-Dimensional Structural Analysis Using
the Integrated Force Method. Comput. Struct. (NASA TM—4655), vol. 59, no. 4, 1996, pp. 691-706.

Kaljevic, I.; Patnaik, S.N.; and Hopkins, D.A.: Three Dimensional Structural Analysis by the Integrated Force Method. Comput. Struct.,
vol. 58, no. 5, 1996, pp. 869-886.

Patnaik, S.N.; Hopkins, D.A.; Aiello, R.A., and Berke, L.: Improved Accuracy for Finite Element Structural Analysis via an Integrated Force
Method. Comput. Struct., vol. 45, no. 3, 1992, pp. 521-542.

Patnaik, S.N.; Berke, L.; and Gallagher, R.H.: Integrated Force Method Versus Displacement Method for Finite Element Analysis. Comput.
Struct. (Also NASA TP-2937), vol. 38, no. 4, 1991, pp. 377-407.

. Patnaik, S.N.: Integrated Force Method Versus the Standard Force Method. Comput. Struct., vol. 22, no. 2, 1986, pp. 151-163.
. Patnaik, S.N_; and Yadagiri, S.: Frequency Analysis of Structures by Integrated Force Method. J. Sound Vibr., vol. 83, 1982, pp. 93-109.
32.

Patnaik, S.N.: An Integrated Force Method for Discrete Analysis. Int. J. Numer. Meth. Engrg., vol. 6, no. 2, 1973, pp. 237-251.

Other References

. Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, New Delhi, 1979.
34.

Gallagher, R.H. : Finite Element Analysis: Fundamentals. Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

. Bathe—I need more information to locate this reference???
36.
37.

Przemieniecki, J.S.: Theory of Matrix Structural Analysis. McGraw-Hill, New York, 1968.
McGuire, W.; and Gallagher, R.H.: Matrix Structural Analysis. Wiley, New York, 1979.

. Sokolnikoff, 1.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York, 1956.
. Robinson, J.: Integrated Theory of Finite Element Methods. Wiley, New York, 1973.
40.

Tapsu, A.: A Contribution to the Systematic Analysis of Finite Element Structures Using the Force Method. Doctoral dissertation,
University of Essen, West Germany, 1979.

NASA/TP—2004-207430 168



REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2004 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Integrated Force Method Solution to Indeterminate Structural
Mechanics Problems

WBS-22-708-24-05

6. AUTHOR(S)

Surya N. Patnaik, Dale A. Hopkins, and Gary R. Halford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field E—-10681
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TP—2004-207430

11. SUPPLEMENTARY NOTES

Surya N. Patnaik, Ohio Aerospace Institute, Brook Park, Ohio and NASA Resident Research Associate at Glenn
Research Center; and Dale A. Hopkins and Gary R. Halford, NASA Glenn Research Center. Responsible person,
Surya N. Patnaik, organization code 5930, 216-433-5916.

12a.

DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited
Subject Category: 39 Distribution: Standard

Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.

13. ABSTRACT (Maximum 200 words)

Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis
primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional
compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by
manipulating the equilibrium concept, either by rewriting in the displacement variables or through the ‘cutting and closing
gap’ technique of the redundant force method. Compatibility improvisation has made analysis cuambersome. The authors
have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilib-
rium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary
unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual
Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The
subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium
equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load,
temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples
illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Equilibrium equation; Compatibility condition; Deformation displacement relation; Force 180
deformation relation; Integrated Force Method; Dual Integrated Force Method; Truss; Beam; 16. PRICE CODE

Shaft; Frame; Membrane structure

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



